In electrical networks, SF6 gas is currently used to insulate high-voltage equipment, however, due to its high environmental impact, new alternatives such as CO2 and electronegative gas mixtures such as CF3I-CO2 are being trialled to replace SF6 and create a sustainable energy system. A high-voltage lightning impulse (1.2 μs/50 μs) was used to approximate the disturbance in a high-voltage electrical network caused by a lightning strike and helped to identify the likely streamer and leader formations in different gases insulating a piece of gas insulated switchgear. In this paper, the theoretical and practical aspects of electrical streamer and leader formations in pure CO2 and an electronegative gas mixture of CF3I-CO2 are examined using schlieren videography in small length rod-plane gas gaps between 20 and 50 mm in length. Schlieren allows the examination of gas density in streamer formations and for the differences in weakly attaching gases, such as CO2, and electronegative gas mixtures, such as CF3I-CO2, to be studied. The gas pressure is varied in order to examine the differences in streamer and leader formation as the gas density is varied and hence the probability of electron collision is varied.
This paper uses practical experimentation to analyse the effect of replacing SF6 with pure CO2 in conventional gas insulated transmission line sections by studying partial discharge measurements taken with applied voltages up to 242 kV (rms). The results can also help in understanding the properties of new alternative gas mixtures which can be utilised with a ratio of up to and over 95% CO2. The experiments undertaken involved filling a gas insulated line demonstrator with 3 bars of CO2 and applying voltages up to 242 kV in both clean conditions and particle-contaminated enclosure conditions. The results demonstrate that CO2 can be used to insulate gas equipment without breakdown at high voltage, however, a higher gas-filling pressure may be needed to reduce the partial discharge found in the tests presented in this paper. Another aspect of the work showed that partial discharge (PD) measurements from internal ultra-high frequency (UHF) sensors compared with a direct measurement from a capacitive divider both clearly showed the effect of contaminating particles in CO2. However, the PD divider measurements also showed considerable external PD on the outside of the gas compartment, leading to the conclusion that UHF sensors are still regarded as having the highest sensitivity and noise immunity for gas insulated switchgear (GIS) or gas insulated transmission line (GIL) systems including when the equipment is insulated with CO2.
The research in this paper consists of practical experimentation on a gas insulated section of high voltage equipment filled with carbon dioxide and technical air as a direct replacement to sulphur hexafluoride (SF6) and analyses the results of PD measurement by way of internal UHF sensors and external HFCTs. The results contribute to ongoing efforts to replace the global warming gas SF6 with an alternative such as pure carbon dioxide or technical air and are applicable to mixtures of electronegative gases that have a high content of buffer gas including carbon dioxide. The experiments undertaken involved filling a full-scale gas insulated line demonstrator with different pressures of CO2 or technical air and applying voltages up to 242 kV in both clean conditions and particle contaminated conditions. The results show that carbon dioxide and technical air can insulate a gas section normally insulated with SF6 at phase-to-earth voltage of 242 kV and that both HFCT and UHF sensors can be used to detect partial discharge with natural gases. The internal UHF sensors show the most accurate PD location results but external HFCTs offer a good compromise and very similar location accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.