Overcoming resistance to chemotherapy and radiation therapy has been a difficult but important goal in the effort to cure cancer. We used gene-expression microarrays to identify differentially expressed genes involved in colorectal cancer resistance to chemotherapy and identified secreted protein, acidic and rich in cysteine (osteonectin) (SPARC) as a putative resistance-reversal gene by demonstrating low SPARC expression in refractory human MIP101 colon cancer cells. We were able to achieve restoration of their radiosensitivity and sensitivity to 5-fluorouracil and irinotecan by reexpression of SPARC in tumor xenografts. Moreover, treatment of mice with SPARC conferred increased sensitivity to chemotherapy and led to significant regression of xenografted tumors. The results show that modulation of SPARC expression affects colorectal cancer sensitivity to radiation and chemotherapy. SPARC-based gene or protein therapy may ameliorate the emergence of resistant clones and eradicate existing refractory clones and offers a novel approach to treating cancer.
Oligodeoxynucleotides (ODNs) containing unmethylated CpG dinucleotides act as agonists of TLR9 and induce Th1-type immune responses. In the present study, we synthesized CpG containing ODNs in which C or G was substituted with 2'-O-methylribonucleotides, 5-methyl-dC, or 2'-O-methyl-5-methyl-C and studied their immune stimulatory activity alone and in combination with TLR agonists. In mouse and human primary cell-based assays, modified ODNs did not stimulate immune responses but inhibited TLR9 agonist-induced immune stimulatory activity. In mice, modified ODNs did not induce cytokines but inhibited immune responses induced by agonists of TLR7 and TLR9. Modified ODNs did not inhibit endosomal TLR3- or cell-surface TLR4-agonist-induced cytokines. This study demonstrates that ODNs incorporated with chemical modifications in CpG dinucleotides do not induce immune stimulatory activity but act as antagonists of TLR7 and TLR9 in vitro and in vivo. These types of modifications are commonly employed in antisense sequences and thereby may affect the intended mechanism of action.
Bacterial and synthetic DNA containing unmethylated CpG motifs act as ligands of Toll-like receptor 9 (TLR9). Our earlier studies showed that 5'-accessibility of synthetic oligodeoxynucleotides containing CpG motif (ODN) is required for TLR9-mediated immune stimulatory activity. Blocking the 5'-end of ODN through conjugation to a variety of moieties reduces immune stimulatory activity (Bioconjugate Chem. 2002, 13, 966-974). In the present study, we conjugated a model peptide, a 28-amino-acid-long beta-amyloid peptide, to either the 5'- or the 3'-end of an ODN via C3 and C6 alkyl linkers. We compared the immune stimulatory activity of the resulting conjugates with that of a parent ODN without conjugation in TLR9-transfected cells, mouse spleen cell cultures, and in vivo in mice. ODN with the peptide conjugated at the 3'-end via C3 and C6 linkers had immune stimulatory activity similar to that of the parent ODN in both in vitro and in vivo in mice. On the contrary, conjugation of peptide at the 5'-end of the ODN significantly abrogated immune stimulatory activity. In conclusion, the results presented here demonstrate that peptide/protein conjugation to ODN is optimal at the 3'-end with either C3 or C6 linker and conjugation at the 5'-end leads to significant loss of TLR9-mediated immune stimulation.
Oligodeoxynucleotides containing a CpG motif and double-or multistranded structure-forming sequences act as agonists of Toll-like receptor 9 (TLR9) and induce high levels of interferon alpha (IFN-␣) in addition to other Th1-type cytokines. In the present study, we evaluated three highly effective IFN-␣-inducing agonists of TLR9 to determine the type of duplex structures formed and the agonist's ability to induce immune responses, including IFN-␣ induction, in human cell-based assays and in vivo in mice and nonhuman primates. Thermal melting studies showed that two of the agonists evaluated had a single melting transition with similar hyperchromicity in both heating and cooling cycles, suggesting the formation of intermolecular duplexes. A third agonist showed a biphasic melting transition in the heating cycle and a monophasic melting transition with lower hyperchromicity during the cooling cycle, suggesting the formation of both intra-and intermolecular duplexes. All three agonists induced the production of Th1-type cytokines and chemokines, including high levels of IFN-␣, in human peripheral blood mononuclear cell and plasmacytoid dendritic cell cultures. Subcutaneous administration of the two intermolecular duplex-forming agonists, but not the intramolecular duplex-forming agonist, induced cytokine secretion in mice. In nonhuman primates, the two agonists that formed intermolecular duplexes induced IFN-␣ and IP-10 secretion. On the contrary, the agonist that formed an intramolecular duplex induced only low levels of cytokines in nonhuman primates, suggesting that this type of structure formation is less immunostimulatory in vivo than the other structure. Taken together, the present results suggest that oligonucleotide-based agonists of TLR9 that form intermolecular duplexes induce potent immune responses in vivo.The vertebrate immune system recognizes highly conserved molecular patterns that are present in pathogens through a number of pattern recognition receptors. Toll-like receptors (TLRs) are among the well-characterized pattern recognition receptors. At least 10 TLRs have been identified in humans, and one of them, TLR9, is the receptor for bacterial and synthetic DNA containing unmethylated CpG motifs (4). TLR9 is expressed predominantly in B cells and plasmacytoid dendritic cells (pDCs) in humans. Activation of these two cell types by synthetic oligonucleotides containing unmethylated CpG motifs via TLR9 results in a Th1-type immune response which includes the secretion of interferon alpha (IFN-␣), IFN-␥, interleukin-12 (IL-12), tumor necrosis factor alpha (TNF-␣), and IL-6 with an increase in the levels of costimulatory surface molecules (1,11,12,17,19,28). A number of TLR9 agonists are currently being evaluated in clinical trials as therapies for various diseases, including cancers, infectious diseases, allergy, and asthma, and as vaccine adjuvants (1, 10).The immune response profiles induced via TLR9 stimulation depend on the stimulatory motif and secondary structure present in the oligonucleotides (...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.