This paper proposes a three-dimensional metamaterial absorber based on a resistive film patch array to develop a low-cost, lightweight absorber for curved surfaces. An excellent absorption over a large frequency band is achieved through two different yet controllable mechanisms; in the first mechanism, a considerable attenuation in the wave power is achieved via graphite resistive films. The absorption is then intensified through magnetic dipoles created by the surface currents, leading to absorption peaks. The simulation results of the absorber show that a broadband absorption greater than 85% is achieved over 35–400 GHz for both TE and TM polarization waves at normal incidence. The structure has more than 167% and 80% absorption bandwidth above 85% and 90%, respectively. It is shown that the proposed metamaterial absorber is independent of incident wave polarization. In addition, the structure is insensitive to incident angles up to 60° for TE mode and full range angle 90° for TM mode. To describe the physical mechanism of the absorber, E-field, power loss density and surface current distributions on the structure are calculated and shown. Moreover, the oblique incidence absorption efficiency is also explained. This absorber paves the way for practical applications, such as sensing, imaging and stealth technology. In addition, the proposed structure can be extended to terahertz, infrared and optical regions.
A biosensor platform based on the plasmonic resonance of graphene in the terahertz (THz) range (0.1 to 10 THz) is designed and investigated. The initial design is to create a nanofluidic channel as a sensing layer in the substrate of a biosensor grounded by metal. The sensor consists of a rectangular graphene patch over the substrate, which can be fed by either an external near-field source or an antenna. The presence of molecules in the nanosensing layer causes small changes in the channel’s properties, detectable through the scattering parameters of the designed biosensor. Since biomolecules are poorly absorbed in the initial biosensor, it can be grounded by a graphene sheet that is the same size as the graphene sheet over the substrate, which results in a performance improvement of the biosensor. It is shown that, by increasing the number of graphene sheets between the ground and the patch, high absorption occurs that enhances the sensitivity of the initial surface plasmon resonance THz biosensor. With varying refractive index of the sensing layer (Ns) in the range of 1.3–1.6, the proposed biosensors are investigated and compared with the initial biosensor. It is shown that by applying a graphene sheet between the two graphene sheets in the substrate, a maximum sensitivity of 8470 nm/RIU is achieved, which is a significant improvement, and also a sensitivity improvement of 4130 nm/RIU is achieved at N s = 1.3 . In the final section, it is shown that changing the substrate material from silicon (Si) to silica ( S i O 2 ) brings a significant sensitivity enhancement in the proposed biosensor with three graphene sheets, which accounts for 15410 nm/RIU in the best scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.