Monitoring the pH of wounds has been recognized as an essential diagnosis factor during the healing process. This study presents a novel chitosan-carbon dots nanocomposite with dual applications as an antibacterial and pH-sensitive nano-agent for enhancing wound healing and monitoring the pH at the same time. The carbon dots (CDs) were synthesized using ammonium hydrogen citrate under Furthermore, the optimized ratio of CDs/chitosan nanocomposite was used as an antibacterial wound healing bandage and in vivo experiments were carried out on three groups of rats. The results showed that the CDs/chitosan nanocomposite not only possessed high pH sensitivity, but could also improve the wound healing process due to its antibacterial properties.
Strong near-infrared (NIR) absorption of reduced graphene oxide (rGO) make this material a candidate for photothermal therapy. The use of rGO has been limited by low stability in aqueous media due to the lack of surface hydrophilic groups. We report synthesis of a novel form of reduced graphene-arginine (rGO-Arg) as a nanoprobe. Introduction of Arg to the surface of rGO not only increases the stability in aqueous solutions but also increases cancer cell uptake. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) images are recorded to characterize the morphology of rGO-Arg. Fourier transform infrared (FTIR), X-ray photoelectron spectra (XPS), Raman, and UV-vis spectroscopy are utilized to analyze the physiochemical properties of rGO-Arg. Interaction of rGO-Arg with 808 nm laser light has been evaluated by measuring the absorption cross section in response to periodically modulated intensity to minimize artifacts arising from lateral thermal diffusion with a material scattering matched to a low scattering optical standard. Cell toxicity and cellular uptake by MD-MB-231 cell lines provide supporting data for the potential application of rGO-Arg for photothermal therapy. Absorption cross-section results suggest rGO-Arg is an excellent NIR absorber that is 3.2 times stronger in comparison to GO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.