To assess the dynamic behavior of monorail-bridge system, an innovative model of train-guideway interaction has been developed based on multibody dynamics and finite element simulation. A finite element model of guideway structure for a particular monorail system is built up using parametric design language, considering a specific length of straddle monorail line in three dimensions. Both straight and curved track geometries are modeled to simulate the actual bridge infrastructure. Flexible elements are adopted for the guideway beams consisting of reinforced concrete profiles to increase the accuracy of the numerical simulations in a more realistic way. The bridge model indeed, is simulated using a beam-frame structure of composite steel-concrete material. A multibody simulation of monorail vehicle is then introduced using the commercial multibody software MSC Adams. The three-dimensional multibody model of the monorail vehicle together with the bridge subassemblies is eventually implemented in multibody environment. The entire dynamic model of the vehicle-track system consists of all flexible and rigid body elements. Dynamic responses of the vehicle and bridge system are then extracted for different loading conditions. The proposed numerical model is validated using some dynamic simulation results of the system from the vehicle manufacturer in the selected case study. The model is further verified against several analytical and measurement results reported in the literature both for straight and curved track configurations. The result of dynamic simulations gives an overview about the dynamic forces and reactions that can appear in bridge structure due to the train movement.
In this paper nonlinear behaviour of electrostatically actuated carbon nanotubes (CNTs) is investigated. The model comprises a clamped–clamped CNT suspended over a graphite ground electrode plate from which a potential difference is imposed. The actuation is based on ac and dc applied voltages and it is assumed that the neutral axis of bending is stretched when the beam is deflected, and also, the interatomic interaction forces between CNT and ground plate are considered. The versatile Galerkin's method is employed to reduce the nonlinear integral-partial-differential equation of motion to a nonlinear ordinary differential equation in time, and then, the reduced equation is solved by direct numerical integration. In the dc voltage actuation case, the pull-in/pull-out phenomena, hysteresis characteristic, pull-in time duration and the response of the system are studied. The obtained results are compared with the molecular dynamics method. Eventually, a nano-switch immune to input noise is proposed, which relies on the hysteresis characteristic of the system. In combined ac and dc voltage actuations, the vibrational behaviour and nonlinear frequency response of nano-resonator are studied.
A finite element (FE) model of the straight guideway bridge under monorail train has been built in this research in order to investigate dynamic interactions of the coupled system in the vertical and longitudinal direction. A limited length of the straddle monorail bridge including five continuous spans is modeled in three dimensions by using FE method. A 3D model of the monorail train system, built in the multibody analyzer MSC ADAMS, is assembled over the bridge. The entire model, consisting of the vehicle and bridge subsystems, is numerically analyzed by performing dynamic simulation in time domain. The braking forces between the train tires and guideway beams are activated in the analysis, in addition to the dead weights of the components and the train live loads. Dynamic forces in the tires are obtained for the case of the emergency braking in the system. The reaction forces, appeared in the bridge piers, are reported as the input forces for the purpose of the bridge design.
In this paper, two terminals, doubly clamped, nano-switch has been studied. Here the interest of this study is the situation in which the pull-in and pull-out voltages not be same as each other and the pull-in/pull-out trend follows a hysteresis loop. This property could be used to introduce a double threshold switch with greater stability or noise immunity. With only one input threshold, a noisy input voltage signal near that threshold could cause the output to switch rapidly back. The model comprises a clamped-clamped carbon nanotube (CNT) suspended over a graphite ground electrode plate from which a potential difference is imposed. The actuation is based on DC applied voltages and it is assumed that the neutral axis of bending is stretched when the beam is deflected, and also, due to closeness of the substrate and the CNT, the van der Waals interaction forces between CNT and ground plate is considered. The versatile Galerkin’s method is employed to reduce the nonlinear integral-partial-differential equation of motion to a nonlinear ordinary differential equation in time, and then, the reduced equation is solved by direct numerical integration. The pull-in/pull-out phenomena, hysteresis characteristic are studied. The obtained results are compared to Molecular Dynamic (MD) method. Eventually, a nano-switch immune to input noise is proposed which relies on the hysteresis characteristic of the system. The proposed CNT-based nano-switch can operate in nano-scale electronics similar to the well known Schmitt trigger circuit in classical electronics. When the input voltage is higher than a certain pull-in voltage threshold, the output of the switch is in “ON” state; when the input voltage is below the pull-out voltage threshold, the output is in “OFF” state; when the input voltage is between the two threshold values, the output retains in the previous state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.