Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic–inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.
A zinc-carnosine (ZnCar) metal−organic coordination polymer was fabricated in biologically relevant N-(2hydroxyethyl)piperazine-N′-ethanesulfonic acid (HEPES) buffer for use as a vaccine platform. In vitro, ZnCar exhibited significantly less cytotoxicity than a well-established zeolitic imidazolate framework (ZIF-8). Adsorption of CpG on the ZnCar surface resulted in enhanced innate immune activation compared to soluble CpG. The model antigen ovalbumin (OVA) was encapsulated in ZnCar and exhibited acid-sensitive release in vitro. When injected intramuscularly on days 0 and 21 in C57BL/6 mice, OVA-specific serum total IgG and IgG1 were significantly greater in all groups with ZnCar and antigen compared to soluble controls. Th1-skewed IgG2c antibodies were significantly greater in OVA and CpG groups delivered with ZnCar for all time points, regardless of whether the antigen and adjuvant were co-formulated in one material or co-delivered in separate materials. When broadly acting Computationally Optimized Broadly Reactive Antigen (COBRA) P1 influenza hemagglutinin (HA) was ligated to ZnCar via its His-tag, significantly greater antibody levels were observed at all time points compared to soluble antigen and CpG. ZnCar-formulated antigen elicited increased peptide presentation to B3Z T cells in vitro and production of IL-2 after ex vivo antigen recall of splenocytes isolated from vaccinated mice. Overall, this work displays the formation of a zinc-carnosine metal−organic coordination polymer that can be applied as a platform for recombinant protein-based vaccines.
The one-electron oxidation of the dianionic diamido-diphenoxo Ni(II) complexes involving H-bonding (1(2-)), or not (2(2-)), yields the corresponding Ni(III) species; the formation, stability and electronic structures of which are affected by the H-bonding interactions.
Metal-organic coordination polymers (CPs) are a broad class of materials that include metal-organic frameworks (MOFs). CPs are highly ordered crystalline materials that are composed of metal ions (or metal ion clusters) and multidentate organic ligands that serve as linkers. One-, two-, and threedimensional CPs can be formed, with 2D and 3D structures referred to as MOFs. CPs have gained a lot of attention due to attractive structural features like structure versatility and tunability, and well-defined pores that enable the encapsulation of cargo. Further, CPs show a lot of promise for drug delivery applications, but only a very limited number of CPs are currently being evaluated in clinical trials. In this review, we outlined features that are desired for CP-based drug delivery platform, and briefly described most relevant characterization techniques. We highlighted some of the recent efforts directed toward developing CP-based drug delivery platforms with the emphasis on vaccines against cancer, infectious diseases, and viruses. We hope this review will be a helpful guide for those interested in the design and evaluation of CPbased immunological drug delivery platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.