There is increasing evidence localizes the mitochondrial chaperone heat shock protein (HSP)60, outside the cell, where it mediates interactions between immune cells and other body tissues. However, the mechanisms by which HSP60 is secreted into the extracellular environment are not fully understood. Recent studies have shown that HSP60 is actively released by a nonconventional secretion mechanism, the lipid raft-exosome pathway. In the present study, we show for the first time that HSP60, produced by 3-methylcholantrene-induced fibrosarcoma tumour cells, is secreted through the conventional endoplasmic reticulum-Golgi secretory pathway. Confocal microscopy using anti-TGN38 and anti-HSP60 antibodies together with monensin, a Golgi transport inhibitor, demonstrated the relocation of HSP60 to the Golgi of malignant cells but not primary fibroblast cells subjected to heat shock or fibroblast cell lines. Transmission electron microscopy, flow cytometry and cell fractionation of cell treated with brefeldin A, an inhibitor of endoplasmic reticulum to Golgi protein transport, further indicated that HSP60 is present both in the endoplasmic reticulum and the Golgi complex of malignant cells. We found a single mRNA with a mitochondrial targeting sequence encoding for HSP60 in the malignant cells but two HSP60 translation products, namely the native unmodified protein and a protein post-translationally modified by N-glycosylation. The N-glycans observed were composed of high-mannose structures and bi-, tri-and tetraantennary complex type structures occupying sites of the three potential glycosylation sites present on HSP60. Accordingly, we propose that HSP60 in malignant cells is transported through the endoplasmic reticulum-Golgi secretion pathway, where it acquires N-glycans, and thus can affect the immunological properties of the proteins in the tumour microenvironment. Structured digital abstractl Grp94 and Hsp60 colocalize by cosedimentation through density gradient (View interaction) Abbreviations 3-MCA, 3-methylcholantrene; BFA, brefeldin A; EGFA, epidermal growth factor receptor; ER, endoplasmic reticulum; FACS, fluorescenceactivated cell sorting; FGF-2, fibroblast growth factor-2; FITC, fluorescein isothiocyanate; HRP, horseradish peroxidase; HSP, heat shock protein; MFI, mean fluorescence intensity; NP-HPLC, normal phase-HPLC; TEM, transmission electron microscopy; TLR, Toll-like receptor.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by degeneration of upper and lower motor neurons. To date, glycosylation patterns of glycoproteins in fluids of ALS patients have not been described. Moreover, the aberrant glycosylation related to the pathogenesis of other neurodegenerative diseases encouraged us to explore the glycome of ALS patient sera. We found high levels of sialylated glycans and low levels of core fucosylated glycans in serum-derived N-glycans of patients with ALS, compared to healthy volunteer sera. Based on these results, we analyzed the IgG Fc N297-glycans, as IgG are major serum glycoproteins affected by sialylation or core fucosylation and are found in the motor cortex of ALS patients. The analyses revealed a distinct glycan, A2BG2, in IgG derived from ALS patient sera (ALS-IgG). This glycan increases the affinity of IgG to CD16 on effector cells, consequently enhancing Antibody-Dependent Cellular Cytotoxicity (ADCC). Therefore, we explore whether the Fc-N297-glycans of IgG may be involved in ALS disease. Immunostaining of brain and spinal cord tissues revealed over-expression of CD16 and co-localization of intact ALS-IgG with CD16 and in brain with activated microglia of G93A-SOD1 mice. Intact ALS-IgG enhanced effector cell activation and ADCC reaction in comparison to sugar-depleted or control IgG. ALS-IgG were localized in the synapse between brain microglia and neurons of G93A-SOD1 mice, manifesting a promising in vivo ADCC reaction. Therefore, glycans of ALS-IgG may serve as a biomarker for the disease and may be involved in neuronal damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.