Environmental DNA (eDNA) metabarcoding is a promising method to monitor species and community diversity that is rapid, affordable and non‐invasive. The longstanding needs of the eDNA community are modular informatics tools, comprehensive and customizable reference databases, flexibility across high‐throughput sequencing platforms, fast multilocus metabarcode processing and accurate taxonomic assignment. Improvements in bioinformatics tools make addressing each of these demands within a single toolkit a reality. The new modular metabarcode sequence toolkit Anacapa ( https://github.com/limey-bean/Anacapa/) addresses the above needs, allowing users to build comprehensive reference databases and assign taxonomy to raw multilocus metabarcode sequence data. A novel aspect of Anacapa is its database building module, “Creating Reference libraries Using eXisting tools” (CRUX), which generates comprehensive reference databases for specific user‐defined metabarcoding loci. The Quality Control and ASV Parsing module sorts and processes multiple metabarcoding loci and processes merged, unmerged and unpaired reads maximizing recovered diversity. DADA2 then detects amplicon sequence variants (ASVs) and the Anacapa Classifier module aligns these ASVs to CRUX‐generated reference databases using Bowtie2. Lastly, taxonomy is assigned to ASVs with confidence scores using a Bayesian Lowest Common Ancestor (BLCA) method. The Anacapa Toolkit also includes an r package, ranacapa, for automated results exploration through standard biodiversity statistical analysis. Benchmarking tests verify that the Anacapa Toolkit effectively and efficiently generates comprehensive reference databases that capture taxonomic diversity, and can assign taxonomy to both MiSeq and HiSeq‐length sequence data. We demonstrate the value of the Anacapa Toolkit in assigning taxonomy to seawater eDNA samples collected in southern California. The Anacapa Toolkit improves the functionality of eDNA and streamlines biodiversity assessment and management by generating metabarcode specific databases, processing multilocus data, retaining a larger proportion of sequencing reads and expanding non‐traditional eDNA targets. All the components of the Anacapa Toolkit are open and available in a virtual container to ease installation.
are co-equal second authors.Robert Wayne and Rachel S. Meyer are co-equal senior authors. Abstract 1. Environmental DNA (eDNA) metabarcoding is a promising method to monitor species and community diversity that is rapid, affordable and non-invasive. The longstanding needs of the eDNA community are modular informatics tools, comprehensive and customizable reference databases, flexibility across high-throughput sequencing platforms, fast multilocus metabarcode processing and accurate taxonomic assignment. Improvements in bioinformatics tools make addressing each of these demands within a single toolkit a reality.2. The new modular metabarcode sequence toolkit Anacapa (https ://github.com/ limey-bean/Anaca pa/) addresses the above needs, allowing users to build comprehensive reference databases and assign taxonomy to raw multilocus metabarcode sequence data. A novel aspect of Anacapa is its database building module, "Creating Reference libraries Using eXisting tools" (CRUX), which generates comprehensive reference databases for specific user-defined metabarcoding loci. The Quality Control and ASV Parsing module sorts and processes multiple metabarcoding loci and processes merged, unmerged and unpaired reads maximizing recovered diversity. DADA2 then detects amplicon sequence variants (ASVs) and the Anacapa Classifier module aligns these ASVs to CRUX-generated reference databases using Bowtie2. Lastly, taxonomy is assigned to ASVs with confidence scores using a Bayesian Lowest Common Ancestor (BLCA) method. The Anacapa Toolkit also includes an r package, ranacapa, for automated results exploration through standard biodiversity statistical analysis.3. Benchmarking tests verify that the Anacapa Toolkit effectively and efficiently generates comprehensive reference databases that capture taxonomic diversity, and can assign taxonomy to both MiSeq and HiSeq-length sequence data. We demonstrate the value of the Anacapa Toolkit in assigning taxonomy to seawater eDNA samples collected in southern California.
The influence of microbiota on host health and disease has attracted adequate attention, and gut microbiota components and microbiota-derived metabolites affect host immune homeostasis locally and systematically. Some studies have found that gut dysbiosis, disturbance of the structure and function of the gut microbiome, disrupts pulmonary immune homeostasis, thus leading to increased disease susceptibility; the gut-lung axis is the primary cross-talk for this communication. Gut dysbiosis is involved in carcinogenesis and the progression of lung cancer through genotoxicity, systemic inflammation, and defective immunosurveillance. In addition, the gut microbiome harbors the potential to be a novel biomarker for predicting sensitivity and adverse reactions to immunotherapy in patients with lung cancer. Probiotics and fecal microbiota transplantation (FMT) can enhance the efficacy and depress the toxicity of immune checkpoint inhibitors by regulating the gut microbiota. Although current studies have found that gut microbiota closely participates in the development and immunotherapy of lung cancer, the mechanisms require further investigation. Therefore, this review aims to discuss the underlying mechanisms of gut microbiota influencing carcinogenesis and immunotherapy in lung cancer and to provide new strategies for governing gut microbiota to enhance the prevention and treatment of lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.