BackgroundColobine monkeys constitute a diverse group of primates with major radiations in Africa and Asia. However, phylogenetic relationships among genera are under debate, and recent molecular studies with incomplete taxon-sampling revealed discordant gene trees. To solve the evolutionary history of colobine genera and to determine causes for possible gene tree incongruences, we combined presence/absence analysis of mobile elements with autosomal, X chromosomal, Y chromosomal and mitochondrial sequence data from all recognized colobine genera.ResultsGene tree topologies and divergence age estimates derived from different markers were similar, but differed in placing Piliocolobus/Procolobus and langur genera among colobines. Although insufficient data, homoplasy and incomplete lineage sorting might all have contributed to the discordance among gene trees, hybridization is favored as the main cause of the observed discordance. We propose that African colobines are paraphyletic, but might later have experienced female introgression from Piliocolobus/Procolobus into Colobus. In the late Miocene, colobines invaded Eurasia and diversified into several lineages. Among Asian colobines, Semnopithecus diverged first, indicating langur paraphyly. However, unidirectional gene flow from Semnopithecus into Trachypithecus via male introgression followed by nuclear swamping might have occurred until the earliest Pleistocene.ConclusionsOverall, our study provides the most comprehensive view on colobine evolution to date and emphasizes that analyses of various molecular markers, such as mobile elements and sequence data from multiple loci, are crucial to better understand evolutionary relationships and to trace hybridization events. Our results also suggest that sex-specific dispersal patterns, promoted by a respective social organization of the species involved, can result in different hybridization scenarios.
A total of 1,811 individuals from two villages located in the areas of China endemic for Schistosoma japonicum were analyzed by the Kato-Katz parasitologic examination, indirect hemagglutination assay (IHA), and enzyme-linked immunosorbent assay (ELISA). Statistical analysis of the results showed the kappa indices ranged from 0.106 to 0.234 between IHA and the stool examination and ranged from 0.037 to 0.134 between ELISA and the fecal examination. The sensitivity value of the IHA was 83.7% in Village A and 92.3% in Village B; the specificity value of the IHA was 55.8% in Village A and 67.3% in Village B. The sensitivity value of the ELISA was 88.4% in Village A and 96.2% in Village B; the specificity value of the ELISA was 38.4% in both Village A and Village B. A search for a good diagnostic test that can be applied in field situations in China should be given high priority.
Odd-nosed monkeys represent one of the two major groups of Asian colobines. Our knowledge about this primate group is still limited as it is highlighted by the recent discovery of a new species in Northern Myanmar. Although a common origin of the group is now widely accepted, the phylogenetic relationships among its genera and species, and the biogeographic processes leading to their current distribution are largely unknown. To address these issues, we have analyzed complete mitochondrial genomes and 12 nuclear loci, including one X chromosomal, six Y chromosomal and five autosomal loci, from all ten odd-nosed monkey species. The gene tree topologies and divergence age estimates derived from different markers were highly similar, but differed in placing various species or haplogroups within the genera Rhinopithecus and Pygathrix. Based on our data, Rhinopithecus represent the most basal lineage, and Nasalis and Simias form closely related sister taxa, suggesting a Northern origin of odd-nosed monkeys and a later invasion into Indochina and Sundaland. According to our divergence age estimates, the lineages leading to the genera Rhinopithecus, Pygathrix and Nasalis+Simias originated in the late Miocene, while differentiation events within these genera and also the split between Nasalis and Simias occurred in the Pleistocene. Observed gene tree discordances between mitochondrial and nuclear datasets, and paraphylies in the mitochondrial dataset for some species of the genera Rhinopithecus and Pygathrix suggest secondary gene flow after the taxa initially diverged. Most likely such events were triggered by dramatic changes in geology and climate within the region. Overall, our study provides the most comprehensive view on odd-nosed monkey evolution and emphasizes that data from differentially inherited markers are crucial to better understand evolutionary relationships and to trace secondary gene flow.
The Guizhou snub-nosed monkey (Rhinopithecus brelichi) is a primate species endemic to the Wuling Mountains in southern China. With a maximum of 800 wild animals, the species is endangered and one of the rarest Chinese primates. To assess the genetic diversity within R. brelichi and to analyze its genetic population structure, we collected fecal samples from the wild R. brelichi population and sequenced the hypervariable region I of the mitochondrial control region from 141 individuals. We compared our data with those from the two other Chinese snub-nosed species (R. roxellana, R. bieti) and reconstructed their phylogenetic relationships and divergence times. With only five haplotypes and a maximum of 25 polymorphic sites, R. brelichi shows the lowest genetic diversity in terms of haplotype diversity (h), nucleotide diversity (π), and average number of pairwise nucleotide differences (Π). The most recent common ancestor of R. brelichi lived ∼0.36 million years ago (Ma), thus more recently than those of R. roxellana (∼0.91 Ma) and R. bieti (∼1.33 Ma). Phylogenetic analysis and analysis of molecular variance revealed a clear and significant differentiation among the three Chinese snub-nosed monkey species. Population genetic analyses (Tajima's D, Fu's F(s) , and mismatch distribution) suggest a stable population size for R. brelichi. For the other two species, results point in the same direction, but population substructure possibly introduces some ambiguity. Because of the lower genetic variation, the smaller population size and the more restricted distribution, R. brelichi might be more vulnerable to environmental changes or climate oscillations than the other two Chinese snub-nosed monkey species. Am J Phys Anthropol, 2012. © 2011 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.