Polygonum cuspidatum Siebold & Zucc. is a well-known and widely used medical plant to treat arthritis, gout and inflammation. In this study, we determined the complete chloroplast genome sequence of P. cuspidatum from Zhejiang Province. The assembled chloroplast (cp) genome was 163,183 bp in length, containing two inverted repeated (IR) regions of 30,859 bp each, a large single copy (LSC) region of 87,905 bp, and a small single copy (SSC) region of 13,560 bp. The genome encodes 131 genes, consisting of 86 protein-coding, 37 tRNA, and eight rRNA genes. The overall GC content of P. cuspidatum is 37.53%, with the highest GC content of 41.27% in the IR region. The 86 protein-coding genes encode 27,597 amino acids in total, most of which use the initiation codon ATG, except the ndhD gene which starts with ACG. The length of the tRNA genes range from 48 bp to 88 bp, with the highest GC content of 62.16% in tRNA-Arg (ACG) and tRNA-Asp (GUC). A total of 66 simple sequence repeats are identified in the cp of P. cuspidatum. Phylogenetic analysis indicated a sister relationship between P. cuspidatum and Fallopia sachalinensis, suggesting a close genetic relationship between the genera of Polygonum and Fallopia. This work provides basic genetic resources for investigating the evolutionary status and population genetics of this important medicinal species.
Context: A portion of patients with chronic myeloid leukaemia (CML) develop resistance to the Bcr-Abl tyrosine kinase inhibitors (TKIs), limiting the clinical applications. Previous results have demonstrated the synergistic effects between cryptotanshinone (CPT) and imatinib on apoptosis of CML cells in vitro. Objective: To determine the antileukemia effects of CPT and TKIs on the resistant CML cells, and further investigate the effect of combined treatment of CPT and imatinib on tumour growth and apoptosis in the xenograft model and clarify its regulatory mechanisms. Materials and methods: The combination effects of CPT and second-generation TKIs were evaluated in resistant CML cells K562-R. CPT and imatinib were orally administered once daily for 21 days on K562-R xenografts in nude mice (6 per group). Tumour proliferation and apoptosis were examined by Ki-67, PCNA and TUNEL staining. The expression levels of apoptotic markers and activities of STAT3 and eIF4E pathways were determined via immunohistochemistry staining and western blotting analysis. Results: CPT significantly enhanced the antiproliferative effects of TKIs, via triggering cleavages of caspase proteins, and inhibiting activities of STAT3 and eIF4E pathways. The administration of CPT and imatinib dramatically inhibited the tumour growth of xenografts and achieved a suppression of 60.2%, which is 2.6-fold higher than that of single imatinib group. Furthermore, CPT and imatinib increased the apoptotic rates and markedly decreased the phosphorylation levels of STAT3 and eIF4E. Conclusions: Our results demonstrated that CPT could significantly enhance the antileukemia efficacy of TKIs, suggesting the therapeutic potential of CPT to overcome CML resistance.
Oxalis corymbosa DC. is an important medicinal and edible perennial herb belonging to the woodsorrel family Oxalidaceae. In this study, we report the complete chloroplast (cp) genome sequence of O. corymbosa. The assembled chloroplast genome was 151,351 bp in length, containing two inverted repeated (IR) regions of 24,587 bp each, a large single copy (LSC) region of 85,476 bp, and a small single copy (SSC) region of 16,701 bp. The genome encodes 128 genes, consisting of 82 protein-coding genes, 37 tRNA genes, eight rRNA genes, and one pseudogene (ycf1). The 82 protein-coding genes encode 25,751 amino acids in total, most of which use the initiation codon ATG, except rps19 and psbC genes start with GTG. The lengths of the tRNA genes range from 71 bp to 93 bp, with the highest GC content of 62.16% in tRNA-Arg (ACG). The overall GC content of O. corymbosa is 36.47%, with the highest GC content of 42.64% in IR region. In addition, a total of 74 simple sequence repeats were identified in the cp genome of O. corymbosa. Phylogenetic analysis indicated a sister relationship between O. corymbosa and O. drummondii, suggesting a close genetic relationship between the two Oxalis species. This work provides basic genetic resources for investigating the evolutionary status and population genetics diversities for this medicinal species.
Orixa japonica Thunb. is an important medicinal plant belonging to the family Rutaceae. In this study, we determined the the complete chloroplast (cp) genome of O. japonica, which was 158,525 bp in length containing one large single copy region (85,965 bp), one small single copy region (18,552 bp), and a pair of inverted repeat regions (27,004 bp each). A total of 134 genes were annotated in the cp genome, including 88 protein coding genes, 37 tRNA genes, eight rRNA genes, and one pseudo gene ycf1. According to the phylogenetic analysis, O. japonica clustered together with Casimiroa edulis with high bootstrap value, indicating a close genetic relationship with subfamily Amyridoideae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.