Perfluorooctanoic acid (PFOA) is a persistent organic pollutant, which has endocrine-disrupting properties and can interfere with the synthesis and secretion of testicular steroid hormones, but the underlying molecular mechanisms are still not fully understood. In this study, we investigated the effects of low doses of PFOA exposure on testicular steroidogenesis in rats and revealed the role of histone modifications. It was found that the serum levels of progesterone, testosterone, and estradiol were significantly increased after 0.015 and 0.15 mg/kg of PFOA exposure, and the expression of Star, a key rate-limiting gene, was up-regulated, while other steroidogenic genes Cyp11a1, Hsd3b, Cyp17a1, and Hsd17b were down-regulated. In addition, the levels of multiple histone modifications (H3K9me1/2/3 and H3K9/18/ 23ac) were all significantly reduced by PFOA in rat testis. Histone H3K9 methylation is associated with gene silencing, while histone acetylation leads to gene activation. ChIP analysis further showed that H3K9me1/3 was significantly decreased in the promoter region of Star, while H3K18ac levels were down-regulated in other gene promoters. Accordingly, we suggest that low-level PFOA enhances StAR expression through the repression of H3K9me1/3, which stimulates steroid hormone production in rat testis. These results are expected to shed new light on the molecular mechanisms by which low-dose PFOA disturbs male reproductive endocrine from an epigenetic aspect and may be useful for human health risk assessment regarding environmental PFOA exposure.
Ubiquitous micro(nano)plastics (MNPs) are emerging environmental pollutants, which pose a potential threat to human health. When MNPs enter the blood circulatory system, vascular endothelium is one of the most important target organs that directly interact with the MNPs. However, little is known about the cytotoxicity of MNPs to vascular endothelial cells. In this study, we investigated the uptake and cytotoxic effects of polystyrene MNPs with a particle size of 1 μm (1‐μm PS‐MNPs) on human umbilical vein endothelial cells (HUVECs) in vitro. Our study found that interaction between HUVECs and 1‐μm PS‐MNPs was at a very low level. Even at the high exposure concentration of 25 μg/mL, the percentage of HUVECs combined with fluorescent 1‐μm PS‐MNPs was only 3.80% using flow cytometry analysis. Moreover, there were no significant differences in inflammation, autophagy, reactive oxygen species (ROS) level, lactate dehydrogenase (LDH) release, and adhesion molecule expression following exposure to 1‐μm PS‐MNPs (5, 10, and 25 μg/mL) for 48 h, except for a remarkable decrease in cell viability at the extremely high concentration of 100 μg/mL. Herein, 1‐μm PS‐MNPs showed a low level of acute toxicity to HUVECs in vitro, and we expect these results contribute to the further risk assessment of MNPs on human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.