The proprotein convertases are synthesized as zymogens that acquire activity upon autocatalytic removal of their NH 2 -terminal prosegment. Based on the convertase furin, to fold properly and gain activity, the convertases PC5A, PACE4, and PC7 are presumed to undergo two sequential prosegment cleavages in the endoplasmic reticulum and then in the trans-Golgi network. However, biochemical and immunocytochemical experiments revealed that mouse PC5A is complexed to its prosegment at the plasma membrane. This labeling is lost upon treatment with heparin and is increased by overexpressing members of the syndecan family and CD44, suggesting attachment of secreted PC5A-prosegment complex to heparan sulfate proteoglycans. Following stimulation of Y1 cells with adrenocorticotropic hormone or 8-bromo-cyclic AMP, the cell surface labeling of the prosegment of PC5A is greatly diminished, whereas the signal for mature PC5A is increased. Moreover, after stimulation, the protease activity of PC5A is enhanced, as evidenced by the cleavage of the PC5A substrates Lefty, ADAMTS-4, endothelial lipase, and PCSK9. Our data suggest a novel mechanism for PC5A activation and substrate cleavage at the cell surface, through a regulated removal of its prosegment. A similar mechanism may also apply to the convertase PACE4, thereby extending our knowledge of the molecular details of the zymogen activation and functions of these heparan sulfate proteoglycan-bound convertases.
The present study showed that in undifferentiated endometrial stromal cells, progestin increases the RLX receptor content to enhance the effect of RLX on the target gene (IGFBP-1). In decidual cells, RLX alone up-regulates its receptor, resulting in a large scale induction of IGFBP-1. TGFbeta1 has an inhibitory effect on LGR7 and IGFBP-1.
Lefty/Ebaf polypeptides, novel members of the TGF-beta superfamily, are involved in endometrial differentiation and embryo implantation. Recently, we showed that, during undisturbed estrous cycle, lefty is present in mouse uterine horn primarily in a precursor form. Here, we show that decidual differentiation of endometrial stroma leads to increased lefty (approximately 3.1- to 3.6-fold in vivo and 5- to 8-fold in vitro) and processing of its precursor primarily to its long form. This event occurs on d 5 of pregnancy, and is paralleled by proprotein convertase (PC)5/6 up-regulation (approximately 6-fold increase for PC5A and 3-fold increase for PC5B) in decidualized uterine horn, independent of embryo implantation. Among the known convertases, only PC5/6A processes lefty to its long form. Taken together, the findings show that decidualized differentiation of stroma, which is a prerequisite for embryo implantation, leads to processing of lefty by PC5/6A.
Background: Nonprofessional phagocytes, like epithelial cells, recognize apoptotic cells. Results: Apoptotic cells mimic the effects of intracellular energy depletion and inhibit the growth (cell size) of epithelial cells with which they interact. Conclusion: Apoptotic cells activate AMP-activated protein kinase (AMPK) and inhibit cell growth. Significance: By acting as sentinels of environmental stress, apoptotic targets enable nearby cells to monitor and adapt to local change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.