This work explored possibilities to obtain colloidal quantum dots (QDs) with ideal photoluminescence (PL) properties, i.e., monoexponential PL decay dynamics, unity PL quantum yield, ensemble PL spectrum identical to that at the single-dot level, single-dot PL nonblinking, and antibleaching. Using CdSe/CdS core/shell QDs as the model system, shell-epitaxy, ligand exchange, and shape conversion of the core/shell QDs were studied systematically to establish a strategy for reproducibly synthesizing QDs with the targeted properties. The key synthetic parameter during epitaxy was application of entropic ligands, i.e., mixed carboxylate ligands with different hydrocarbon chain length and/or structure. Well-controlled epitaxial shells with certain thickness (∼3-8 monolayers of the CdS shells) were found to be necessary to reach ideal photoluminescence properties, and the size of the core QDs was found to play a critical role in determining both photophysical and photochemical properties of the core/shell QDs. Effects of shape of the core QDs were unnoticeable, and shape of the core/shell QDs only affected photophysical properties quantitatively. Surface ligands, amines versus carboxylates, were important for photochemical properties (antiblinking and antibleaching) but barely affected photophysical properties as long as entropic ligands (mixed carboxylate ligands with distinguishable hydrocarbon chain lengths) were applied during epitaxy. Chemical environment (in polymer or in air), coupled with surface ligands, determined photochemical properties of the core/shell QDs with a given core size and shell thickness.
Colloidal quantum dots are promising emitters for quantum-dot-based light-emitting-diodes. Though quantum dots have been synthesized with efficient, stable, and high colour-purity photoluminescence, inheriting their superior luminescent properties in light-emitting-diodes remains challenging. This is commonly attributed to unbalanced charge injection and/or interfacial exciton quenching in the devices. Here, a general but previously overlooked degradation channel in light-emitting-diodes, i.e., operando electrochemical reactions of surface ligands with injected charge carriers, is identified. We develop a strategy of applying electrochemically-inert ligands to quantum dots with excellent luminescent properties to bridge their photoluminescence-electroluminescence gap. This material-design principle is general for boosting electroluminescence efficiency and lifetime of the light-emitting-diodes, resulting in record-long operational lifetimes for both red-emitting light-emitting-diodes (T 95 > 3800 h at 1000 cd m −2) and blue-emitting light-emitting-diodes (T 50 > 10,000 h at 100 cd m −2). Our study provides a critical guideline for the quantum dots to be used in optoelectronic and electronic devices.
Phonon-assisted up-conversion photoluminescence can boost energy of an emission photon to be higher than that of the excitation photon by absorbing vibration energy (or phonons) of the emitter. Here, up-conversion photoluminescence power-conversion efficiency (power ratio between the emission and excitation photons) for CdSe/CdS core/shell quantum dots is observed to be beyond unity. Instead of commonly known defect-assisted up-conversion photoluminescence for colloidal quantum dots, temperature-dependent measurements and single-dot spectroscopy reveal the up-conversion photoluminescence and conventional down-conversion photoluminescence share the same electron-phonon coupled electronic states. Ultrafast spectroscopy results imply the thermalized excitons for up-conversion photoluminescence form within 200 fs, which is 100,000 times faster than the radiative recombination rate of the exciton. Results suggest that colloidal quantum dots can be exploited as efficient, stable, and cost-effective emitters for up-conversion photoluminescence in various applications.
This work studies extinction properties of ZnSe quantum dots terminated with either Se-surface or Zn-surface (Se-ZnSe or Zn-ZnSe QDs). In addition to commonly observed photoluminescence quenching by anionic surface sites, Se-ZnSe QDs are found to show drastic signatures of Se-surface states in their UV-visible (Vis) absorption spectra. Similar to most QDs reported in literature, monodisperse Zn-ZnSe QDs show sharp absorption features and blue-shifted yet steep absorption edge respect to the bulk bandgap. However, for monodisperse Se-ZnSe QDs, all absorption features are smeared and a low-energy tail is identified to extend to an energy window below the bulk ZnSe bandgap. Along increasing their size, a cyclic growth of ZnSe QDs switches their surface from Zn-terminated to Se-terminated ones, which confirms that the specific absorption signatures are reproducibly repeated between those of two types of the QDs. Though the extinction coefficients per unit of Se-ZnSe QDs are always larger than those of Zn-ZnSe QDs with the same size, both of them approach the same bulk limit. In addition to contribution of the lattice, extinction coefficients per nanocrystal of Zn-ZnSe QDs show an exponential term against their sizes, which is expected for quantum-confinement enhancement of electron-hole wavefunction overlapping. For Se-ZnSe QDs, there is the third term identified for their extinction coefficients per nanocrystal, which is proportional to the square of size of the QDs and consistent with surface contribution.
Wurtzite CdSe@CdS dot@platelet nanocrystals with (001) and (00–1) polar facets as the basal planes and (100) family of nonpolar facets as the side planes are applied for studying surface defects on semiconductor nanocrystals. When they are terminated with cadmium ions coordinated with carboxylate ligands, a single set of absorption features and band-edge photoluminescence (PL) with near unity PL quantum yield and monoexponential PL decay dynamics (lifetime ∼28 ns) are observed. In addition to these spectral signatures, when the surface is converted to sulfur-terminated, a second set of sharp absorption features with decent extinction coefficients and a secondary band-edge PL with low PL quantum yield and long-lifetime (>78 ns) PL decay dynamics are reproducibly recorded. Photochemical analysis confirms that the secondary UV–vis and PL spectral features are quantitatively correlated with each other. Chemical analysis and X-ray photoelectron spectroscopy measurements confirm that such secondary spectral features are well correlated with the sulfide (such as −SH) and disulfide (such as −S–S−) surface sites of a basal plane, which likely form surface hole electronic states delocalized on the entire basal plane. Results suggest that, for studying surface defects on semiconductor nanocrystals, it is essential to prepare a nearly monodisperse surface structure in terms of facets and surface chemical bonding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.