BackgroundAs an imperative part of PI3K/Akt/mTOR pathway, mammalian target of rapamycin (mTOR) has been demonstrated to increase in gastric cancer cells and tumors. Our research explored the relationship between single nucleotide polymorphism (SNP) rs2295080 in mTOR promoter region and the risk of gastric cancer (GC).MethodsSeven hundred and fifty-three (753) gastric adenocarcinoma patients and 854 matched healthy subjects were recruited in the cancer association study and 60 tissues were used to test the expression of mTOR. Unconditional logistic regression was selected to evaluate the association between the rs2295080 T>G polymorphism and GC risk. We then examined the functionality of this promoter genetic variant by luciferase assay and EMSA.ResultsIndividuals with G allele had a 23% decreased risk of GC, comparing with those carrying T allele (adjusted OR = 0.77, 95% CI = 0.65–0.92). This protective effect of G allele stood out better in male group. Meanwhile, GC patients carrying TG/GG genotype also displayed a decreased mRNA level of mTOR (P = 0.004). In luciferase assay, T allele tended to enhance the transcriptional activity of mTOR with an approximate 0.5-fold over G allele. Furthermore, EMSA tests explained that different alleles of rs2295080 displayed different affinities to some transcriptional factor.ConclusionThe mTOR promoter polymorphism rs2295080 was significantly associated with GC risk. This SNP, which effectively influenced the expression of mTOR, may be a new biomarker of early diagnosis of gastric cancer and a suitable indicator of utilizing mTOR inhibitor for treatment of GC.
Current procedures for diagnosis and biomarker examination of colorectal cancer (CRC) are invasive and unpleasant. There is a great need to identify sensitive and specific biomarkers for early diagnosis of CRC. Circulating microRNAs (miRNAs) are promising molecular markers for CRC prediction. We performed a comprehensive meta-analysis to integrate an evaluation index for diagnostic accuracy of circulating miRNAs in diagnosing CRC patients. Furthermore, we conducted an independent validation set of 49 CRC patients and 49 healthy controls. In our meta-analysis, we found that miR-21 yielded a pooled area under ROC curve (AUC) of 0.867 (sensitivity: 76%, specificity: 82%) in discriminating CRC from controls, and miR-92a yielded a summary AUC of 0.803 (sensitivity: 77%, specificity: 68%); miR-21 had a higher diagnostic efficiency than miR-92a. In the further validation, plasma miR-21 levels in CRC patients were significantly higher than levels observed in healthy subjects. A ROC curve analysis showed a consistent result. However, this phenotype was not present in miR-92a. Moreover, the expression trend of miR-21 in plasma samples was in line with that of tissue samples, along with the cellular level. Current evidences suggest that plasma miR-21 could be a reliable and non-invasive biomarker for CRC diagnosis. Studies with larger cohorts that include the diagnostic value of plasma miR-21 for CRC are warranted.
Our results indicated that PCGEM1 polymorphisms may contribute to PCa risk in Chinese men. Additional functional analyses are required to detect the detailed mechanism underlying the observed association.
Immune escape due to immunosuppressive microenvironments, such as those associated with regulatory T (Treg) cells is highly associated with initial occurrence and development of solid tumors or hematologic malignancies. Here, we employed high-throughput transcriptome screening to demonstrate immunosuppression-associated increases in the long noncoding (lnc) RNA lnc-insulin receptor precursor (INSR), which was corrected with INSR expression in CD4+ T cells extracted from the bone marrow of patients with childhood acute T lymphoblastic leukemia. Loss-of-function and gain-of-function assays in vitro and in vivo revealed that membrane-localized and cytoplasm-localized lnc-INSR promoted Treg distribution and decreased the percentage of cytotoxic T lymphocytes, which induced tumor growth. Through direct binding with INSR, lnc-INSR blocked the INSR ubiquitination site, causing abnormal activation of INSR and the phosphatidylinositide 3-kinase/AKT-signaling pathway. These results indicated that lnc-INSR might promote immune suppression by enhancing Treg-cell differentiation and serve as valuable therapeutic targets in the immunosuppressive tumor microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.