A biphasic gastroretentive floating drug delivery system with multiple-unit mini-tablets based on gas formation technique was developed to maintain constant plasma level of a drug concentration within the therapeutic window. The system consists of loading dose as uncoated core units, and prolonged-release core units are prepared by direct compression process; the latter were coated with three successive layers, one of which is seal coat, an effervescent (sodium bicarbonate) layer, and an outer polymeric layer of polymethacrylates. The formulations were evaluated for quality control tests, and all the parameters evaluated were within the acceptable limits. The system using Eudragit RL30D and combination of them as polymeric layer could float within acceptable time. The drug release was linear with the square root of time. The rapid floating and the controlled release properties were achieved in this present study. When compared with the theoretical release profile, the similarity factor of formulation with coating of RS:RL (1:3)-7.5%, was observed to be 74, which is well fitted into zero-order kinetics confirming that the release from formulation is close to desired release profile. The stability samples showed no significant change in dissolution profiles (p > 0.05). In vivo gastric residence time was examined by radiograms, and it was observed that the units remained in the stomach for about 5 h.
A gastro retentive floating drug delivery system with multiple-unit minitab's based on gas formation technique was developed in order to prolong the gastric residence time and to increase the overall bioavailability of the drug. The system consists of the drug-containing core units prepared by direct compression process, which are coated with three successive layers of an inner seal coat, effervescent layer (sodium bicarbonate) and an outer gas-entrapped polymeric membrane of an polymethacrylates (Eudragit RL30D, RS30D, and combinations of them). Only the system using Eudragit RL30D and combination of them as a gas-entrapped polymeric membrane could float. The time to float decreased as amount of the effervescent agent increased and coating level of gas-entrapped polymeric membrane decreased. The optimum system floated completely within 3 min and maintained the buoyancy over a period of 12 h. The drug release was controlled and linear with the square root of time. Increasing coating level of gas-entrapped polymeric membrane decreased the drug release. Both the rapid floating and the controlled release properties were achieved in the multiple-unit floating drug delivery system developed in this present study. The analysis of the parameter dissolution data after storage at 40 degrees C and 75% RH for 3 months showed, no significant change indicating the two dissolution profiles were considered to be similar (f2 value is more than 50).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.