Legumes are important components of sustainable agricultural production, food, nutrition and income systems of developing countries. In spite of their importance, legume crop production is challenged by a number of biotic (diseases and pests) and abiotic stresses (heat, frost, drought and salinity), edaphic factors (associated with soil nutrient deficits) and policy issues (where less emphasis is put on legumes compared to priority starchy staples). Significant research and development work have been done in the past decade on important grain legumes through collaborative bilateral and multilateral projects as well as the CGIAR Research Program on Grain Legumes (CRP‐GL). Through these initiatives, genomic resources and genomic tools such as draft genome sequence, resequencing data, large‐scale genomewide markers, dense genetic maps, quantitative trait loci (QTLs) and diagnostic markers have been developed for further use in multiple genetic and breeding applications. Also, these mega‐initiatives facilitated release of a number of new varieties and also dissemination of on‐the‐shelf varieties to the farmers. More efforts are needed to enhance genetic gains by reducing the time required in cultivar development through integration of genomics‐assisted breeding approaches and rapid generation advancement.
There are several hurdles to ensure sustainable seed production and consistent flow of improved legume varieties in sub‐Saharan Africa (SSA) and South Asia (SA). The unreliable demand, autogamous nature of most of the grain legumes, and slow variety replacement rate by smallholder farmers do not provide strong incentive for private seed companies to invest in legume seed business. Unless a well thought‐out and comprehensive approach to legume seed delivery is developed, current seed shortages will continue, eroding emerging market opportunities. The experiences reported here are collated through a 10‐year partnership project, the Tropical Legumes in SSA and SA. It fostered innovative public–private partnerships in joint testing of innovative market‐led seed systems, skills and knowledge enhancement, de‐risking private sector initiatives that introduced in new approaches and previously overlooked entities in technology delivery. As new public and private seed companies, individual seed entrepreneurs and farmer organizations emerged, the existing ones enhanced their capacities. This resulted in significant rise in production, availability and accessibility of various seed grades of newly improved and farmer demanded legume varieties in the target countries.
Sustaining crop production and productivity in sub-Saharan Africa requires the availability and use of quality seed of improved varieties by smallholder farmers. The private sector has been considered as the best way to sustain seed supply and crop productivity. Unfortunately, the private sector’s share in the seed production and delivery in sub-Saharan Africa countries has not been very substantial for decades. As a consequence, farmer access to quality seed of recently released varieties remains very low. This manuscript analyzes the experiences of informal seed producers who graduated to formal private seed enterprises to understand the effectiveness of the support they receive to become viable seed ventures. We used comparative research methods to analyze the qualitative and quantitative data collected to understand the underlying mechanisms. The findings showed that the analyzed seed enterprises started with as little as about USD 300 and have already multiplied over tenfold their initial capital. They benefited from a wide variety of supports, e.g., quality seed production, marketing, partnerships, and value chain development trainings and infrastructures, from extension workers, research centers, national and international NGOs, and the other private seed enterprise operators like large public seed enterprises and agro-dealers. The seed enterprises are producing pre-basic, basic, and certified seed of cereals and self-pollinated legume crops delivered directly to farmers, institutional markets, and agro-dealers. The seed production data have been increasing for the past three years with an area expanding from about 30 ha to over 150 ha per year for chickpea. The seed production and delivery practices being employed are smallholder farmer-based practices that are environmentally friendly. For sustainable and reliable seed production and delivery systems in sub-Saharan Africa, a bold step is needed whereby the informal seed production entities are nurtured and upgraded into formal certified seed production ventures that deliver social and economic benefits to the promotors and the communities.
Chickpea (Cicer arietinum L.) is the third important food legume both in area and production after common beans and faba beans in Ethiopia. However, the productivity of the crop was very low compared to the potential as a result of non-use of improved varieties and technologies generated by the research system. To enhance the use of the improved and associated research technologies a National Chickpea Stakeholders Innovation Platform was established in 2013 with the objective of bringing together various stakeholders acting on the value chain in order to identify major challenges and find solutions that would be implemented through synergetic efforts. The platform identified seed shortage as a major bottleneck in the sector. This issue has been addressed through establishing farmers’ seed producer associations with the help of R&D partners and currently they are the major suppliers nationwide. Side by side, the platform strengthened the extension effort and triggered dissemination of improved technologies to a large number of farmers. As a result, productivity of the crop by model farmers increased by fourfold and the national productivity has been doubled to 2 ton ha−1 in the last decade. The platform also worked on improving access to market and recently chickpea joined the Ethiopian Commodity Exchange market. Cognizant of the huge development potential of the crop, the platform is striving to further strengthen the intervention and reap opportunities.
Ethiopian subsistence farmers traditionally store their grain harvests, leaving them open to storage pests and fungi that can cause contamination of major staple crops. Applying the most effective strategy requires a precise understanding of the insect species, infestation rates, storage losses, and storage conditions in the various types of farmers’ grain stores. This study did a complete literature analysis on post-harvest pest and management measures with a focus on Ethiopia. The most frequent insect pests of stored cereals in this study were weevils (Sitophilus spp.), the lesser grain borer (Rhyzopertha dominica), rust-red flour beetle (Tribolium sp.), sawtoothed grain beetle (Oryzaephilus sp.), grain beetle (Cryptolestes spp.), Indian meal moth (Plodia interpunctella), and Angoumois grain moth (Sitotroga cerealella). Flour beetles (Tribolium spp.), sawtoothed beetles (Oryzaephilus sp.), flat grain beetles (Cryptolestes pusillus), and some moths have been identified as common stored product pests of stored oil seed, while bruchid beetles (Callosobruchus chinensis) and the moths were reported for pulses. Additionally, the storage pests in Ethiopia under varied conditions caused storage losses of 9–64.5%, 13–95%, 36.9–51.9%, and 2–94.7% in maize, sorghum, chickpeas, and sesame, respectively. To reduce the losses incurred, preventative measures can be taken before infestations or as soon as infestations are discovered. A variety of pest population monitoring systems for harvested products and retailers have been developed and recommended. In this context, reducing post-harvest grain losses is an urgent concern for improving food accessibility and availability for many smallholder farmers in Ethiopia and ensuring the nation’s long-term food security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.