Elephant grass (2n = 4x = 28; Cenchrus purpureus Schumach.), also known as Napier grass, is an important forage grass and potential energy crop in tropical and subtropical regions of Asia, Africa and America. However, no study has yet reported a genome assembly for elephant grass at the chromosome scale. Here, we report a high‐quality chromosome‐scale genome of elephant grass with a total size of 1.97 Gb and a 1.5% heterozygosity rate, obtained using short‐read sequencing, single‐molecule long‐read sequencing and Hi‐C chromosome conformation capture. Evolutionary analysis showed that subgenome A' of elephant grass and pearl millet may have originated from a common ancestor more than 3.22 million years ago (MYA). Further, allotetraploid formation occurred at approximately 6.61 MYA. Syntenic analyses within elephant grass and with other grass species indicated that elephant grass has experienced chromosomal rearrangements. We found that some key enzyme‐encoding gene families related to the biosynthesis of anthocyanidins and flavonoids were expanded and highly expressed in leaves, which probably drives the production of these major anthocyanidin compounds and explains why this elephant grass cultivar has a high anthocyanidin content. In addition, we found a high copy number and transcript levels of genes involved in C4 photosynthesis and hormone signal transduction pathways that may contribute to the fast growth of elephant grass. The availability of elephant grass genome data advances our knowledge of the genetic evolution of elephant grass and will contribute to further biological research and breeding as well as for other polyploid plants in the genus Cenchrus.
Napier grass is an important tropical forage-grass and of growing potential as an energy crop. One-hundred-five Napier grass accessions, encompassing two independent collections, were subjected to genotyping by sequencing which generated a set of high-density genome-wide markers together with short sequence reads. The reads, averaging 54 nucleotides, were mapped to the pearl millet genome and the closest genes and annotation information were used to select candidate genes linked to key forage traits. 980 highly polymorphic SNP markers, distributed across the genome, were used to assess population structure and diversity with seven-subgroups identified. A few representative accessions were selected with the objective of distributing subsets of a manageable size for further evaluation. Genome-wide linkage disequilibrium (LD) analyses revealed a fast LD-decay, on average 2.54 kbp, in the combined population with a slower LD-decay in the ILRI collection compared with the EMBRAPA collection, the significance of which is discussed. This initiative generated high-density markers with a good distribution across the genome. The diversity analysis revealed the existence of a substantial amount of variation in the ILRI collection and identified some unique materials from the EMBRAPA collection, demonstrating the potential of the overall population for further genetic and marker-trait-association studies.
Resistance to pathogens is essential for survival of wild and cultivated plants. Pathogen susceptibility causes major losses of crop yield and quality. Durable field resistance combined with high yield and other superior agronomic characters are therefore, important objectives in every crop breeding program. Precision and efficacy of resistance breeding can be enhanced by molecular diagnostic tools, which result from knowledge of the molecular basis of resistance and susceptibility. Breeding uses resistance conferred by single R genes and polygenic quantitative resistance. The latter is partial but considered more durable. Molecular mechanisms of plant pathogen interactions are elucidated mainly in experimental systems involving single R genes, whereas most genes important for quantitative resistance in crops like potato are unknown. Quantitative resistance of potato to Phytophthora infestans causing late blight is often compromised by late plant maturity, a negative agronomic character. Our objective was to identify candidate genes for quantitative resistance to late blight not compromised by late plant maturity. We used diagnostic DNA-markers to select plants with different field levels of maturity corrected resistance (MCR) to late blight and compared their leaf transcriptomes before and after infection with P. infestans using SuperSAGE (serial analysis of gene expression) technology and next generation sequencing. We identified 2034 transcripts up or down regulated upon infection, including a homolog of the kiwi fruit allergen kiwellin. 806 transcripts showed differential expression between groups of genotypes with contrasting MCR levels. The observed expression patterns suggest that MCR is in part controlled by differential transcript levels in uninfected plants. Functional annotation suggests that, besides biotic and abiotic stress responses, general cellular processes such as photosynthesis, protein biosynthesis, and degradation play a role in MCR.
The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis), a transcription factor and a homolog of a major gene for resistance to P. infestans from the wild potato species Solanum venturii. The candidate gene approach and GWAS complemented each other as they identified different genes. The results of this study provide new insight in the molecular genetic basis of quantitative resistance in potato and a toolbox of diagnostic SNP markers for breeding applications.
The evaluation of forage crops for adaptability and performance across production systems and environments is one of the main strategies used to improve forage production. To enhance the genetic resource base and identify traits responsible for increased feed potential of Napier grass, forty-five genotypes from Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Brazil, were evaluated for forage biomass yield and feed nutritional quality in a replicated trial under wet and dry season conditions in Ethiopia. The results revealed significant variation in forage yield and feed nutritional qualities among the genotypes and between the wet and dry seasons. Feed fiber components were lower in the dry season, while crude protein, in vitro organic matter digestibility, and metabolizable energy were higher. Based on the cumulative biomass and metabolizable energy yield, top performing genotypes were identified that are candidates for future forage improvement studies. Furthermore, the marker-trait association study identified diagnostic single nucleotide polymorphisms (SNP) and SilicoDArT markers and potential candidate genes that could differentiate high biomass yielding and high metabolizable energy genotypes in the collection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.