Many Actinomycetes aminoglycosides are widely used antibiotics. Although mainly antibacterials, a few known aminoglycosides also inhibit yeasts, protozoans and important crop pathogenic fungal oomycetes. Here we show that attachment of a C8 alkyl chain to ring III of a neamine-based aminoglycoside specifically at the 4 00 -O position yields a broad-spectrum fungicide (FG08) without the antibacterial properties typical for aminoglycosides. Leaf infection assays and greenhouse studies show that FG08 is capable of suppressing wheat fungal infections by Fusarium graminearum-the causative agent of Fusarium head blight-at concentrations that are minimally phytotoxic. Unlike typical aminoglycoside action of ribosomal protein translation miscoding, FG08's antifungal action involves perturbation of the plasma membrane. This antibacterial to antifungal transformation could pave the way for the development of a new class of aminoglycoside-based fungicides suitable for use in crop disease applications. In addition, this strategy is an example of reviving a clinically obsolete drug by simple chemical modification to yield a new application.
A library of 5″-modified neomycin derivatives were synthesized for an antibacterial structure-activity optimization strategy. Two leads exhibited prominent activity against both methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). Antibacterial activities were measured when combined with other clinically used antibiotics. Significant synergistic activities were observed which may lead to the development of novel therapeutic practices in the battle against infectious bacteria.
A divergent approach was employed for the synthesis of aminosugars, from which a novel library of aminoglycoside antibiotics (pyranmycins) was synthesized. Pyranmycins have comparable antibacterial activity as neomycin, a clinically used aminoglycoside antibiotic, against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Mycobacterium smegmatis. In addition, pyranmycins, like streptomycin, are bacteriocidal while isoniazid (INH) is bacteriostatic. Therefore, pyranmycins may provide new therapeutic options in the treatment against tuberculosis. Several members of pyranmycins also manifest modest anti-Tat and anti-Rev activities, which may aid in the development of new anti-HIV agents. Although the antibacterial activity of pyranmycins against aminoglycoside resistant bacteria is less than expected, the synthetic methodologies of utilizing a library of aminosugars can be a model for future studies of glycodiversification or glycorandomization.
Lyme disease is a major human health problem which continues to increase in incidence and geographic distribution. As a vector-borne zoonotic disease, Lyme disease may be amenable to reservoir targeted strategies for control. We have previously reported that a vaccinia virus (VV) based vaccine expressing outer surface protein A (OspA) of Borrelia burgdorferi, the causative agent of Lyme disease, protects inbred strains of laboratory mice against infection by feeding ticks and clears the ticks of infection when administered by gavage. Here we extend these studies to develop an effective bait formulation for delivery of the VV based vaccine and test its characteristics under simulated environmental conditions. We show that this vaccine is efficacious in decreasing acquisition of B. burgdorferi by uninfected larval ticks as well as in decreasing transmission from infected ticks to its natural reservoir, Peromyscus leucopus, when fed to mice in oral baits. Using live, in vivo imaging techniques, we describe the distribution of vaccinia virus infection after ingestion of the baited vaccines and establish the use of in vivo imaging technology for optimization of bait delivery. In summary, a VV based OspA vaccine is stable in an oral bait preparation and provides protection against infection for both the natural reservoir and the tick vector of Lyme disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.