With climate change prevailing around the world, understanding the changes in long-term annual and seasonal rainfall at local scales is very important in planning for required adaptation measures. This is especially true for areas such as the Awash River basin where there is very high dependence on rain- fed agriculture characterized by frequent droughts and subsequent famines. The aim of the study is to analyze long-term trends of annual and seasonal rainfall in the Awash River Basin, Ethiopia. Monthly rainfall data extracted from Climatic Research Unit (CRU 4.01) dataset for 54 grid points representing the entire basin were aggregated to find the respective areal annual and seasonal rainfall time series for the entire basin and its seven sub-basins. The Mann-Kendall (MK) test and Sen Slope estimator were applied to the time series for detecting the trends and for estimating the rate of change, respectively. The Statistical software package R version 3.5.2 was used for data extraction, data analyses, and plotting. Geographic information system (GIS) package was also used for grid making, site selection, and mapping. The results showed that no significant trend (at α = 0.05) was identified in annual rainfall in all sub-basins and over the entire basin in the period (1902 to 2016). However, the results for seasonal rainfall are mixed across the study areas. The summer rainfall (June through September) showed significant decreasing trend (at α ≤ 0.1) over five of the seven sub-basins at a rate varying from 4 to 7.4 mm per decade but it showed no trend over the two sub-basins. The autumn rainfall (October through January) showed no significant trends over four of the seven sub-basins but showed increasing trends over three sub-basins at a rate varying from 2 to 5 mm per decade. The winter rainfall (February through May) showed no significant trends over four sub-basins but showed significant increasing trends (at α ≤ 0.1) over three sub-basins at a rate varying from 0.6 to 2.7 mm per decade. At the basin level, the summer rainfall showed a significant decreasing trend (at α = 0.05) while the autumn and winter rainfall showed no significant trends. In addition, shift in some amount of summer rainfall to winter and autumn season was noticed. It is evident that climate change has shown pronounced effects on the trends and patterns of seasonal rainfall. Thus, the study contribute to better understanding of climate change in the basin and the information from the study can be used in planning for adaptation measures against a changing climate.
Irrigated agriculture, particularly small-scale irrigation (SSI), is a mainstay for sustainable livelihoods in the developing world. In Ethiopia, SSI sustainability is threatened mainly due to excessive sedimentation. Stakeholders’ perceptions of the causes of sedimentation and how they sustain SSI under excessive sedimentation conditions were investigated in two SSI schemes in Ethiopia. A participatory rapid diagnosis and action planning was implemented, consisting of a literature review, participatory rural appraisal, and semi-structured interviews. Results show that farmers slightly differed in perception of excessive sedimentation drivers. Farmers reported design problems as the main cause of excessive sedimentation (64%), followed by poor operation and maintenance (O and M) practices (21%) and external factors (15%). In contrast, 62% of the interviewed engineers indicated erosion and irrigation technologies as the main causes of excessive sedimentation, while few reported poor design (13%). In addition to an intensive desilting campaign, farmers delayed the start of the irrigation season to avoid the intake of highly sedimented water. Local social capital and knowledge appeared to be more important than formal knowledge and blue-print institutions for dealing with sedimentation problems. Well-organized structure and extra time devoted by famers were vital for SSI sustainability. Integration of the farmers’ knowledge with that of the engineers could yield more effective ways to deal with sedimentation problems.
Background: Characterizing and describing soils and land use and make a suggestion for sustainable utilization of land resources in the Ethiopian Rift valley flat plain areas of Lake Chamo Sub-Basin (CSB) are essential. Objectives: To (1) characterize soils of experimental area according to World Reference Base Legend and assess the nature and extent of salinity problems; (2) characterize land use systems and their role in soil properties; and (3) identify best land use practices used for both environmental management and improve agricultural productivity. Methods: Twelve randomly collected soil samples were prepared from the above land uses into 120 composites and analyzed. Results: Organic carbon (OC) and total nitrogen (TN) were varied along different land uses and depleted from the surface soils. The soil units include Chernozems (41.67%), Kastanozems (25%), Solonchaks (16.67%), and Cambisols (16.67%). The identified land uses are annual crops (AA), perennial crops (PA), and natural forest (NF). Generally, organic carbon, total nitrogen, percentage base saturation (PBS), exchangeable (potassium, calcium, and magnesium), available phosphorus (P 2 O 5), manganese, copper, and iron contents were decreased in cultivated soils. Soil salinity problem was observed in annuals. Annuals have less nutrient content compared to perennials in irrigated agriculture while it is greater in annuals under rainfed. Clay, total nitrogen, available phosphorus, and available potassium (K 2 O) contents were correlated positively and highly significantly with organic carbon and electrical conductivity. Conclusion: Management practices that improve soil quality should be integrated with leguminous crops when the land is used for annual crops production.
Ethiopia’s food supply and economy in general is largely dependent on rain-fed agriculture. Hence, irrigation development is vital to minimize the risk of crop failure and sustain agricultural production. The purpose of this review was to collect published and unpublished information from relevant sources and then review and synthesize key information on the trends and status of irrigation development and challenges threatening its implementation and sustainability. Historically, traditional irrigation based on farmers’ own initiative and indigenous knowledge has been practiced in Ethiopia for over 2000 years. However, well-planned, government-funded medium and large-scale irrigation development started only three decades ago. Specifically, significant progresses have been registered during the implementation of two consecutive five-year plans, the “Growth and Transformation Plans”. Currently, the total area equipped for irrigation has reached some 3.07 million hectares. However, the actual area irrigated is lower than this figure. The challenges facing the irrigation sector are related to study and design, construction or implementation, irrigation management, and lack of other support services such as extension, input services, and market. While the expansion of irrigation is still important, the poor performances and operational management of existing irrigation schemes needs to be given equal attention. As many of the problems are related to capacity and capability limitations, there is an urgent need for institutional and capacity development for the irrigation sector.
Knowledge of soil infiltration characteristics is required increasingly for the proper design and efficient management of irrigation. Various empirical and physically based infiltration models have been used for several years, but the practical use of many is limited by parameter determination problems, which, in turn, are influenced by factors acting at the surface and within the soil, initial and boundary conditions, etc. In this study, a simplified approach for determining parameters for the Kostiakov equation was tested and validated. The equation's linearized form, using logarithmic transformation and field data collected from five sites, was employed. The results show that cumulative infiltration can be described well using the approach. Its quality is also confirmed by performance indices like R2 and standard error, whose values ranged from 0.985 to 0.999 and 0.020 to 0.005, respectively, suggesting that the simplified approach described is sufficient for practical purposes, when data are too scarce to apply other, complex methods to predict cumulative infiltration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.