The present study scrutinizes slip effects and stagnation point flows of upperconvected Maxwell fluid past a stretching sheet. The non-linear ordinary differential equations are obtained from the governing partial differential equations and solved using implicit finite difference method. The impacts of non-dimensional governing parameters such as Brownian motion parameter, velocity ratio, velocity slip parameter, suction/injection parameter, Lewis numbers, upper-convected Maxwell parameter, magnetic field, thermophoresis parameter, chemical reactions parameter, thermal slip parameter, solutal slip parameter, and heat source parameter on the velocity field, heat and mass transfer characteristics are discussed and presented through graphs. The values of local Sherwood number, local Nusselt number, and skin friction coefficient are discussed and presented through tables. The results indicate that when the magnetic field is intensified, it reduces velocity profiles and raises temperature and concentration profiles. Moreover, with an upsurge in velocity slip parameter, the local Nusselt number and local Sherwood number diminish.
In this paper, we discussed the effect of activation energy on mixed convective heat and mass transfer of Williamson nanofluid with heat generation or absorption over a stretching cylinder. Dimensionless ordinary differential equations are obtained from the modeled PDEs by using appropriate transformations. Numerical results of the skin friction coefficient, Nusselt number, and Sherwood number for different parameters are computed. The effects of the physical parameter on temperature, velocity, and concentration have been discussed in detail. From the result, it is found that the dimensionless velocity decreases whereas temperature and concentration increase when the porous parameter is enhanced. The present result has been compared with published paper and found good agreement.
This paper scrutinizes the effect of viscous dissipation on unsteady two-dimensional boundary layer flow of Williamson nanofluid over a stretching/Shrinking wedge. To express the boundary condition in concentration problem the passive control concept used. The governing PDEs are converted to ODEs by means of a similarity transformation before being solved numerically by finite difference scheme called Keller-Box method. The equations were numerically solved by using Matlab software 2013a. The characteristics of parameters such as wedge angle, unsteadiness, Williamson, slip, Brownian motion, thermophoresis, chemical reaction parameters, Prandtl number, Biot-number, Eckert number and Lewis number on velocity, concentration and temperature profiles and skin friction coefficient, Nusselt number and Sherwood number are presented in graphs and tables. The result of the study designates that the velocity profiles increased with an upsurge of wedge angle, unsteady parameter and suction parameter while it is diminished with an increase of Williamson and injection parameter. The temperature profiles upsurges with the distended Williamson parameter, Biot number and injection parameter, while it is declined for large values of wedge angle, unsteady and suction parameter. With an increase of Williamson, unsteady and suction parameter the concentration profiles upsurges, while it is decreased with an increase of wedge angle and injection parameter. The numerical results are compared with available literature and obtained a good agreement.Nomenclature
This article mainly addresses the influence of the viscous dissipation, melting, and chemical reaction on Williamson and Maxwell nanofluids over a stretching sheet embedded in porous media. The system of partial differential equations which is obtained by conservation principles, is transformed by means of an appropriate similarity transformation into a system of ordinary differential equations. The numerical results are obtained by employing the Keller box method. The impacts of different germane parameters on velocity profiles, thermal and concentration fields, Nusselt number, skin friction coefficient, and Sherwood number are selected by means of graphical and tabular representations. Our numerical solution detects that the dimensionless melting parameter highly affects the velocity boundary layer of a Williamson nanofluid when compared with an upper-convected Maxwell nanofluid. Moreover, the velocity, temperature, and concentration distributions decrease for both fluids when the permeability parameter increases. Furthermore, the temperature distribution increases with an increase of the Eckert number.
The effect of viscous dissipation and thermal radiation on mixed convective heat transfer of an MHD Williamson nanofluid past a stretching cylinder in the existence of chemical reaction is analyzed in this study. When energy equation is formulated, the variable thermal conductivity is deliberated. By proposing applicable similarity transformations, nonlinear ordinary differential equations (ODEs) are attained from partial differential equations. These nondimensional ODEs are computed through Runge‐Kutta method integrated with shooting method using MATLAB software. The results found numerically are in agreement with that of the published works of similar nature in a limiting case. The results of the local Nusselt number, skin friction coefficient, and Sherwood numbers are organized in tables. The influence of protuberant parameters on temperature, velocity, and concentration is presented by graphs. From the results, it is seen that for higher values of variable thermal conductivity parameter, the local Sherwood number and skin friction coefficient upsurge, whereas the local Nusselt number diminishes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.