Two semi-analytical one-degree-of-freedom secular models are presented for the motion of small bodies beyond Neptune. A special attention is given to trajectories entirely exterior to the planetary orbits. The first one is the well-known non-resonant model of Kozai (1962) adapted to the transneptunian region. Contrary to previous papers, the dynamics is fully characterized with respect to the fixed parameters. A maximum perihelion excursion possible of 16.4 AU is determined. The second model handles the occurrence of a mean-motion resonance with one of the planets. In that case, the one-degree-of-freedom integrable approximation is obtained by postulating the adiabatic invariance, and is much more general and accurate than previous secular models found in the literature. It brings out in a plain way the possibility of perihelion oscillations with a very high amplitude. Such a model could thus be used in future studies to deeper explore that kind of motion. For complex resonant orbits (especially of type 1 : k), a segmented secular description is necessary since the trajectories are only "integrable by parts". The two models are applied to the Solar System but the notations are kept general so that it could be used for any quasi-circular and coplanar planetary system.
Context. Seasonal variations and climate stability of a planet are very sensitive to the planet obliquity and its evolution. This is of particular interest for the emergence and sustainability of land-based life, but orbital and rotational parameters of exoplanets are still poorly constrained. Numerical explorations usually realised in this situation are thus in heavy contrast with the uncertain nature of the available data. Aims. We aim to provide an analytical formulation of the long-term spin-axis dynamics of exoplanets, linking it directly to physical and dynamical parameters, but still giving precise quantitative results if the parameters are well known. Together with bounds for the poorly constrained parameters of exoplanets, this analysis is designed to allow a quick and straightforward exploration of the spin-axis dynamics. Methods. The long-term orbital solution is decomposed in quasi-periodic series and the spin-axis Hamiltonian is expanded in powers of eccentricity and inclination. Chaotic zones are measured by the resonance overlap criterion. Bounds for the poorly known parameters of exoplanets are obtained from physical grounds (rotational breakup) and dynamical considerations (equipartition of AMD).Results. This method gives accurate results when the orbital evolution is well known. The chaotic zones for planets of the Solar System can be retrieved in details from simple analytical formulas. For less constrained planetary systems, the maximal extent of the chaotic regions can be computed, requiring only the mass, the semi-major axis and the eccentricity of the planets present in the system. Additionally, some estimated bounds of the precession constant allow to classify which observed exoplanets are necessarily out of major spin-orbit secular resonances (unless the precession rate is affected by the presence of massive satellites).Remembering that S p is the amplitude of a given term in the inclination series (5), this means that the parameter Article number, page 4 of 23 M. Saillenfest et al.: Secular spin-axis dynamics of exoplanets
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.