Cell classifier circuits are synthetic biological circuits capable of distinguishing between different cell states depending on specific cellular markers and engendering a state-specific response. An example are classifiers for cancer cells that recognize whether a cell is healthy or diseased based on its miRNA fingerprint and trigger cell apoptosis in the latter case. Binarization of continuous miRNA expression levels allows to formalize a classifier as a Boolean function whose output codes for the cell condition. In this framework, the classifier design problem consists of finding a Boolean function capable of reproducing correct labelings of miRNA profiles. The specifications of such a function can then be used as a blueprint for constructing a corresponding circuit in the lab. To find an optimal classifier both in terms of performance and reliability, however, accuracy, design simplicity and constraints derived from availability of molcular building blocks for the classifiers all need to be taken into account. These complexities translate to computational difficulties, so currently available methods explore only part of the design space and consequently are only capable of calculating locally optimal designs. We present a computational approach for finding globally optimal classifier circuits based on binarized miRNA datasets using Answer Set Programming for efficient scanning of the entire search space. Additionally, the method is capable of computing all optimal solutions, allowing for comparison between optimal classifier designs and identification of key features. Several case studies illustrate the applicability of the approach and highlight the quality of results in comparison with a state of the art method. The method is fully implemented and a comprehensive performance analysis demonstrates its reliability and scalability.
Background Emerging pathogens are a growing threat, but large data collections and approaches for predicting the risk associated with novel agents are limited to bacteria and viruses. Pathogenic fungi, which also pose a constant threat to public health, remain understudied. Relevant data remain comparatively scarce and scattered among many different sources, hindering the development of sequencing-based detection workflows for novel fungal pathogens. No prediction method working for agents across all three groups is available, even though the cause of an infection is often difficult to identify from symptoms alone. Results We present a curated collection of fungal host range data, comprising records on human, animal and plant pathogens, as well as other plant-associated fungi, linked to publicly available genomes. We show that it can be used to predict the pathogenic potential of novel fungal species directly from DNA sequences with either sequence homology or deep learning. We develop learned, numerical representations of the collected genomes and visualize the landscape of fungal pathogenicity. Finally, we train multi-class models predicting if next-generation sequencing reads originate from novel fungal, bacterial or viral threats. Conclusions The neural networks trained using our data collection enable accurate detection of novel fungal pathogens. A curated set of over 1400 genomes with host and pathogenicity metadata supports training of machine-learning models and sequence comparison, not limited to the pathogen detection task. Availability and implementation The data, models and code are hosted at https://zenodo.org/record/5846345, https://zenodo.org/record/5711877 and https://gitlab.com/dacs-hpi/deepac. Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.