Summary Background: A significant need exists for new chronic oral anticoagulation therapies to replace warfarin. Previous studies have shown that b-D-xylosides, which prime glycosaminoglycan (GAG) synthesis, have antithrombin and antithrombotic activity. In the following report, a new orally active b-D-xyloside (odiparcil) has been characterized in a rat model of venous thrombosis and its efficacy and bleeding liability compared to warfarin. Additionally, studies were conducted to investigate odiparcil's ex vivo antithrombin and antiplatelet activity, and also to explore the potential utility of protamine sulfate as a neutralizing agent. Methods and results: In vivo thrombosis studies were conducted in a rat inferior vena cava model, and bleeding studies in a rat tail transection model. Following oral dosing, warfarin and odiparcil produced doserelated suppression of thrombus formation. A therapeutically relevant dose of warfarin in this model (international normalized ratio; INR 3.0) achieved 65% inhibition of thrombus formation. Warfarin caused dose-related significant increases in bleeding indices. Odiparcil antithrombotic activity was limited by its mechanism to a maximum suppression of thrombus formation of 65-70%, and did not prolong bleeding indices. Additionally, odiparcil-induced heparin cofactor II (HCII)-dependent antithrombin activity was shown to be a function of dermatan sulfate-like GAG production. Other than thrombinrelated effects, no odiparcil effects on platelet function were observed. In antidote studies, it was demonstrated that odiparcil-induced antithrombotic activity could be partially neutralized by protamine sulfate. Conclusions: These experiments suggest that an antithrombotic approach based upon xyloside induction of circulating GAGs may have the potential to approximate the efficacy of warfarin and yet with a reduced risk to hemostasis.
These experiments demonstrate that GW813893 is a potent, selective, orally active inhibitor of FXa. The data suggest that GW813893 has robust antithrombotic potential at doses that have no detectable hemostasis liability. Collectively, the profile suggests that GW813893 has the preclinical pharmacology underpinnings of an oral antithrombotic therapeutic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.