It has long been established that the thymus plays a central role in autoimmune myasthenia gravis (MG) because of either thymoma or thymic hyperplasia of lymphoproliferative origin. In this review, we discuss thymic changes associated with thymic hyperplasia and their implications in the development of an autoimmune response against the acetylcholine receptor (AChR).The hyperplastic MG thymus displays all the characteristics of tertiary lymphoid organs (TLOs): neoangiogenic processes with high endothelial venule and lymphatic vessel development, chemokine overexpression favoring peripheral cell recruitment, and ectopic germinal center development. As thymic epithelial cells or myoid cells express AChR, a specific antigen presentation can easily occur within the thymus in the presence of recruited peripheral cells, such as B cells and T follicular helper cells. How the thymus turns into a TLO is not known, but local inflammation seems mandatory. Interferon (IFN)-β is overexpressed in MG thymus and could orchestrate thymic changes associated with MG. Knowledge about how IFN-β is induced in MG thymus and why its expression is sustained even long after disease onset would be of interest in the future to better understand the etiological and physiopathological mechanisms involved in autoimmune MG.
Abnormal toll-like receptor (TLR) activation and uncontrolled resolution of inflammation are suspected to play a key role in the development of autoimmune diseases. Acquired myasthenia gravis (MG) is an invalidating neuromuscular disease leading to muscle weaknesses. MG is mainly mediated by anti-acetylcholine receptor (AChR) autoantibodies, and thymic hyperplasia characterized by ectopic germinal centers is a common feature in MG. An abnormal expression of certain TLRs is observed in the thymus of MG patients associated with the overexpression of interferon (IFN)-β, the orchestrator of thymic changes in MG. Experimental models have been developed for numerous autoimmune diseases. These models are induced by animal immunization with a purified antigen solubilized in complete Freund's adjuvant (CFA) containing heat-inactivated mycobacterium tuberculosis (MTB). Sensitization against the antigen is mainly due to the activation of TLR signaling pathways by the pathogen motifs displayed by MTB, and attempts have been made to substitute the use of CFA by TLR agonists. AChR emulsified in CFA is used to induce the classical experimental autoimmune MG model (EAMG). However, the TLR4 activator lipopolysaccharide (LPS) has proved to be efficient to replace MTB and induce a sensitization against purified AChR. Poly(I:C), the well-known TLR3 agonist, is also able by itself to induce MG symptoms in mice associated with early thymic changes as observed in human MG. In this review, we discuss the abnormal expression of TLRs in MG patients and we describe the use of TLR agonists to induce EAMG in comparison with other autoimmune experimental models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.