Lef-1 and PITX2 function in the Wnt signaling pathway by recruiting and interacting with -catenin to activate target genes. Chromatin immunoprecipitation (ChIP) assays identified the Lef-1 promoter as a PITX2 downstream target. Transgenic mice expressing LacZ driven by the 2.5-kb LEF-1 promoter demonstrated expression in the tooth epithelium correlated with endogenous Lef-1 FL epithelial expression. PITX2 isoforms regulate the LEF-1 promoter, and -catenin synergistically enhanced activation of the LEF-1 promoter in combination with PITX2 and Lef-1 isoforms. PITX2 enhances endogenous expression of the full-length -catenin-dependent Lef-1 isoform (Lef-1 FL) while decreasing expression of the N-terminally truncated -catenin-independent isoform. Our research revealed a novel interaction between PITX2, Lef-1, and -catenin in which the Lef-1 -catenin binding domain is dispensable for its interaction with PITX2. PITX2 interacts with two sites within the Lef-1 protein. Furthermore, -catenin interacts with the PITX2 homeodomain and Lef-1 interacts with the PITX2 C-terminal tail. Lef-1 and -catenin interact simultaneously and independently with PITX2 through two different sites to regulate PITX2 transcriptional activity. These data support a role for PITX2 in cell proliferation, migration, and cell division through differential Lef-1 isoform expression and interactions with Lef-1 and -catenin.Pitx2 and Lef-1 encode two transcription factors whose expression can be regulated by early signaling events involved in numerous developmental programs. Pitx2 and Lef-1 are differentially expressed in many tissues, and they demonstrate overlapping expression during tooth development. Lef-1 can be activated by BMP, Wnt, Smads, and transforming growth factor  signaling (18,32,33). Furthermore, Lef-1 transcriptional activity is regulated by its interaction with -catenin. Secreted
Homeodomain (HD) transcriptional activities are tightly regulated during embryogenesis and require protein interactions for their spatial and temporal activation. The chromatin-associated high mobility group protein (HMG-17) is associated with transcriptionally active chromatin, however its role in regulating gene expression is unclear. This report reveals a unique strategy in which, HMG-17 acts as a molecular switch regulating HD transcriptional activity. The switch utilizes the Wnt/β-catenin signaling pathway and adds to the diverse functions of β-catenin. A high-affinity HMG-17 interaction with the PITX2 HD protein inhibits PITX2 DNA-binding activity. The HMG-17/PITX2 inactive complex is concentrated to specific nuclear regions primed for active transcription. β-Catenin forms a ternary complex with PITX2/HMG-17 to switch it from a repressor to an activator complex. Without β-catenin, HMG-17 can physically remove PITX2 from DNA to inhibit its transcriptional activity. The PITX2/HMG-17 regulatory complex acts independently of promoter targets and is a general mechanism for the control of HD transcriptional activity. HMG-17 is developmentally regulated and its unique role during embryogenesis is revealed by the early embryonic lethality of HMG-17 homozygous mice. This mechanism provides a new role for canonical Wnt/β-catenin signaling in regulating HD transcriptional activity during development using HMG-17 as a molecular switch.
FoxJ1 is a forkhead transcription factor expressed in
Tbx1−/− mice present with phenotypic effects observed in DiGeorge syndrome patients however, the molecular mechanisms of Tbx1 regulating craniofacial and tooth development are unclear. Analyses of the Tbx1 null mice reveal incisor microdontia, small cervical loops and BrdU labeling reveals a defect in epithelial cell proliferation. Furthermore, Tbx1 null mice molars are lacking normal cusp morphology. Interestingly, p21 (associated with cell cycle arrest) is up regulated in the dental epithelium of Tbx1−/− embryos. These data suggest that Tbx1 inhibits p21 expression to allow for cell proliferation in the dental epithelial cervical loop, however Tbx1 does not directly regulate p21 expression. A new molecular mechanism has been identified where Tbx1 inhibits Pitx2 transcriptional activity and decreases the expression of Pitx2 target genes, p21, Lef-1 and Pitx2c. p21 protein is increased in PITX2C transgenic mouse embryo fibroblasts (MEF) and chromatin immunoprecipitation assays demonstrate endogenous Pitx2 binding to the p21 promoter. Tbx1 attenuates PITX2 activation of endogenous p21 expression and Tbx1 null MEFs reveal increased Pitx2a and activation of Pitx2c isoform expression. Tbx1 physically interacts with the PITX2 C-terminus and represses PITX2 transcriptional activation of the p21, LEF-1, and Pitx2c promoters. Tbx1−/+/Pitx2−/+ double heterozygous mice present with an extra premolar-like tooth revealing a genetic interaction between these factors. The ability of Tbx1 to repress PITX2 activation of p21 may promote cell proliferation. In addition, PITX2 regulation of p21 reveals a new role for PITX2 in repressing cell proliferation. These data demonstrate new functional mechanisms for Tbx1 in tooth morphogenesis and provide a molecular basis for craniofacial defects in DiGeorge syndrome patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.