We present a Group Lasso procedure for generalized linear models (GLMs) and we study the properties of this estimator applied to sparse high-dimensional GLMs. Under general conditions on the covariates and on the joint distribution of the pair covariates, we provide oracle inequalities promoting group sparsity of the covariables. We get convergence rates for the prediction and estimation error and we show the ability of this estimator to recover good sparse approximation of the true model. Then we extend this procedure to the case of an Elastic net penalty. At last we apply these results to the so-called Poisson regression model (the output is modeled as a Poisson process whose intensity relies on a linear combination of the covariables). The Group Lasso method enables to select few groups of meaningful variables among the set of inputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.