The PII signal transducing protein is involved in carbon/nitrogen (C/N) sensing in bacteria and cyanobacteria. In higher plants the function of the PII homolog GLB1 is not known. GLB1 transcripts were found in all plant organs tested, while in Arabidopsis leaves GLB1 expression and PII protein levels were not significantly affected by either the day/night cycle or N-nutrition. Its putative regulatory role in plants has been studied by analysing Arabidopsis thaliana T-DNA insertion lines in the GLB1 gene. These PII mutants showed an 80% (PIIV1 mutant) and 100% (PIIS2 mutant) reduced AtGLB1 transcript level and no detectable PII protein. They did not display an altered growth or developmental phenotype when grown under non-limiting conditions suggesting that the PII protein does not play a crucial role in plants. However, in vitro grown PII mutants did show a higher sensitivity to nitrite (NO (2) (-) ) compared to the wild-type plants. This observation is reminiscent of the role of PII in the regulation of NO (2) (-) metabolism in cyanobacteria. Furthermore, when grown hydroponically, the PII mutants displayed a slight increase in carbohydrate (starch and sugars) levels in response to N starvation and a slight decrease in the levels of ammonium (NH (4) (+) ) and amino acids (mainly Gln) in response to NH (4) (+) resupply. Although the phenotypic changes are rather small in the mutant lines, these data support the hypothesis of a subtle involvement of the PII protein in the regulation of some steps of primary C and N metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.