Hypoxia occurs in 80% of non-small cell lung carcinoma (NSCLC) cases, leading to treatment resistance. Hypoxia’s effects on NSCLC energetics are not well-characterized. We evaluated changes in glucose uptake and lactate production in two NSCLC cell lines under hypoxia in conjunction with growth rate and cell cycle phase distribution. The cell lines A549 (p53 wt) and H358 (p53 null) were incubated under hypoxia (0.1% and 1% O2) or normoxia (20% O2). Glucose and lactate concentrations in supernatants were measured using luminescence assays. Growth kinetics were followed over seven days. Cell nuclei were stained with DAPI and nuclear DNA content was determined by flow cytometry to determine cell cycle phase. Gene expression under hypoxia was determined by RNA sequencing. Glucose uptake and lactate production under hypoxia were greater than under normoxia. They were also significantly greater in A549 compared to H358 cells. Faster energy metabolism in A549 cells was associated with a higher growth rate in comparison to H358 cells under both normoxia and hypoxia. In both cell lines, hypoxia significantly slowed down the growth rate compared to proliferation under normoxic conditions. Hypoxia led to redistribution of cells in the different cycle phases: cells in G1 increased and the G2 population decreased. Glucose uptake and lactate production increase under hypoxia in NSCLC cells indicated greater shunting of glucose into glycolysis rather than into oxidative phosphorylation compared to normoxia, making adenosine triphosphate (ATP) production less efficient. This may explain the redistribution of hypoxic cells in the G1 cell cycle phase and the time increase for cell doubling. Energy metabolism changes were more prominent in faster-growing A549 cells compared to slower-growing H358 cells, indicating possible roles for the p53 status and inherent growth rate of different cancer cells. In both cell lines, genes associated with cell motility, locomotion and migration were upregulated under chronic hypoxia, indicating a strong stimulus to escape hypoxic conditions.
Background While the World Health Organization (WHO) Southeast Asia region has the second highest incidence of malaria worldwide, malaria in Vietnam is focal to few provinces, where delayed parasite clearance to anti-malarial drugs is documented. This study aims to understand Plasmodium species distribution and the genetic diversity of msp1 and msp2 of parasite populations using molecular tools. Methods A total of 222 clinical isolates from individuals with uncomplicated malaria were subjected to Plasmodium species identification by nested real-time PCR. 166 isolates positive for Plasmodium falciparum mono infections were further genotyped for msp1 (MAD20, K1, and RO33), and msp2 allelic families (3D7 and FC27). Amplicons were resolved through capillary electrophoresis in the QIAxcel Advanced system. Results Mono-infections were high and with 75% P. falciparum, 14% Plasmodium vivax and 9% P. falciparum/P. vivax co-infections, with less than 1% Plasmodium malariae identified. For msp1, MAD20 was the most prevalent (99%), followed by K1 (46%) allelic family, with no sample testing positive for RO33 (0%). For msp2, 3D7 allelic family was predominant (97%), followed by FC27 (10%). The multiplicity of infection of msp1 and msp2 was 2.6 and 1.1, respectively, and the mean overall multiplicity of infection was 3.7, with the total number of alleles ranging from 1 to 7. Conclusions Given the increasing importance of antimalarial drugs in the region, the genetic diversity of P. falciparum msp1 and msp2 should be regularly monitored with respect to treatment outcomes and/or efficacy studies in regions, where there are ongoing changes in the malaria epidemiology.
The blue biliprotein phycocyanin, produced by photo-autotrophic cyanobacteria including spirulina (Arthrospira) and marketed as a natural food supplement or "nutraceutical," is reported to have anti-inflammatory, antioxidant, immunomodulatory, and anticancer activity. These diverse biological activities have been specifically attributed to the phycocyanin chromophore, phycocyanobilin (PCB). However, the mechanism of action of PCB and the molecular targets responsible for the beneficial properties of PCB are not well understood. We have developed a procedure to rapidly cleave the PCB pigment from phycocyanin by ethanolysis and then characterized it as an electrophilic natural product that interacts covalently with thiol nucleophiles but lacks any appreciable cytotoxicity or antibacterial activity against common pathogens and gut microbes. We then designed alkyne-bearing PCB probes for use in chemical proteomics target deconvolution studies. Target identification and validation revealed the cysteine protease legumain (also known as asparaginyl endopeptidase, AEP) to be a target of PCB. Inhibition of this target may account for PCB's diverse reported biological activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.