SummaryTo avoid detrimental interactions with intestinal microbes, the human epithelium is covered with a protective mucus layer that traps host defence molecules. Microbial properties such as adhesion to mucus further result in a unique mucosal microbiota with a great potential to interact with the host. As mucosal microbes are difficult to study in vivo, we incorporated mucin‐covered microcosms in a dynamic in vitro gut model, the simulator of the human intestinal microbial ecosystem (SHIME). We assessed the importance of the mucosal environment in this M‐SHIME (mucosal‐SHIME) for the colonization of lactobacilli, a group for which the mucus binding domain was recently discovered. Whereas the two dominant resident Lactobacilli, Lactobacillus mucosae and Pediococcus acidilactici, were both present in the lumen, L. mucosae was strongly enriched in mucus. As a possible explanation, the gene encoding a mucus binding (mub) protein was detected by PCR in L. mucosae. Also the strongly adherent Lactobacillus rhamnosus GG (LGG) specifically colonized mucus upon inoculation. Short‐term assays confirmed the strong mucin‐binding of both L. mucosae and LGG compared with P. acidilactici. The mucosal environment also increased long‐term colonization of L. mucosae and enhanced its stability upon antibiotic treatment (tetracycline, amoxicillin and ciprofloxacin). Incorporating a mucosal environment thus allowed colonization of specific microbes such as L. mucosae and LGG, in correspondence with the in vivo situation. This may lead to more in vivo‐like microbial communities in such dynamic, long‐term in vitro simulations and allow the study of the unique mucosal microbiota in health and disease.
Natural preservatives answer the consumer demand for long shelf life foods, synthetic molecules being perceived as a health risk. Lysozyme is already used because of its muramidase activity against Gram-positive bacteria. It is also described as active against some Gram-negative bacteria; membrane disruption would be involved, but the mechanism remains unknown. In this study, a spectrophotometric method using the mutant Escherichia coli ML-35p has been adapted to investigate membrane disruption by lysozyme for long durations. Lysozyme rapidly increases the permeability of the outer membrane of E. coli due to large size pore formation. A direct delayed activity of lysozyme against the inner membrane is also demonstrated, but without evidence of perforations.
For food as well as for medical applications, there is a growing interest in novel and natural antimicrobial molecules. Lysozyme is a promising candidate for the development of such molecules. This protein is largely studied and known for its muramidase activity against Gram-positive bacteria, but it also shows antimicrobial activity against Gram-negative bacteria, especially when previously modified. In this study, the activity of dry-heated lysozyme (DH-L) against Escherichia coli has been investigated and compared to that of native lysozyme (N-L). Whereas N-L only delays bacterial growth, DH-L causes an early-stage population decrease. The accompanying membrane permeabilization suggests that DH-L induces either larger pores or more pores in the outer membrane as compared to N-L, as well as more ion channels in the inner membrane. The strong morphological modifications observed by optical microscopy and atomic force microscopy when E. coli cells are treated with DH-L are consistent with the suggested disturbances of membrane integrity. The higher hydrophobicity, surface activity, and positive charge induced by dry-heating could be responsible for the increased activity of DH-L on the E. coli membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.