The spatial distributions of (1) surface sediment characteristics (D0.5, Sediment Surface Area (SSA), Particulate Organic Carbon (POC), Chlorophyll-a (Chl-a), Phaeophytin-a (Phaeo-a), Total and Enzymatically Hydrolyzable Amino Acids (THAA, EHAA), δ13C) and (2) sediment profile image (apparent Redox Potential Discontinuity (aRPD), numbers and depths of biological traces) characteristics were quantified based on the sampling of 32 stations located within the West Gironde Mud Patch (Bay of Biscay, NE Atlantic) in view of (1) assessing the spatial structuration of a temperate river-dominated ocean margin located in a high-energy area, (2) disentangling the impacts of hydrodynamics and bottom trawling on this structuration, and (3) comparing the West Gironde Mud Patch with the Rhône River Prodelta (located in a low-energy area). Results support the subdivision of the West Gironde Mud Patch in a proximal and a distal part and show (1) the existence of depth gradients in surface sedimentary organics characteristics and bioturbation within the distal part; (2) no evidence for a significant effect of bottom trawling, as opposed to Bottom Shear Stress, on the West Gironde Mud Patch spatial structuration; and (3) major discrepancies between spatial structuration in the West Gironde Mud Patch and the Rhône River Prodelta, which were attributed to differences in tidal regimes, sedimentation processes, and local hydrodynamics, which is in agreement with current river-dominated ocean margin typologies.
The spatial distribution of seagrass beds within the Cartagena Bay and neighboring areas was reconstructed through comparative analyses of maps, aerial photographs and satellite imagery, as well as observations in the field for five time periods within the last six decades. From slightly more than 1,000 hectares of seagrass beds existing in 1935-45, only 76 remained in 2001, which is less than 8%. The loss rate of seagrass within the bay showed an inverse exponential pattern, whereas outside of the bay the tendency was linear. The almost disappearance of this community was probably raged by the reopening of the Canal del Dique early in the thirties, causing the introduction of important amounts of turbid freshwater and sediments into the bay, and subsequently accelerated by the rapid development of the industrial zone, spilling of polluted industrial and domestic waters, dredging and coastal development. The reduction of seagrass areas has been seemingly accompanied by changes in the structure of the animal community, becomig apparent through the evident disappearance of suspension feeding invertebrates which were so far dominant elements three decades earlier. The loss of seagrass beds in the bay during the 20th century seems likely to be part of the long lasting human transformation process of this ecosystem, which started three centuries before.
Coastal environments are directly influenced by terrigenous inputs coming from rivers through estuaries. Quantifying the amount of nutrients and contaminants transported by sediments from continental areas to the sea is crucial for marine resources protection. However, the complexity of estuarine dynamics makes it difficult to quantify sediment fluxes from field measurements alone and requires numerical modeling. Thus, using a realistic 3-D hydrodynamic and sediment transport model, this study aims at evaluating the influence of model empirical parameters on sediment fluxes and estimating uncertainties on mud and sand transfers at a macrotidal estuary mouth. A sensitivity analysis, considering changes in sediment transport parameters, revealed that the system is sensitive not only to settling and erosion parameterizations but also to the spin-up period and the sediment sliding process. Both estuarine circulation and tidal pumping induce a residual up-estuary transport, which is balanced by seaward export during spring tides. Although more fine sediments are exported within the surface turbid plume during high river discharge, the net mud transport is directed up-estuary due to increased baroclinic circulation. Besides, model results highlighted a strong seasonal variability in sediment fluxes with a short and high import during high river flow and a long and weak export during low river flow. Uncertainties associated with the simulated fluxes were about 93% for mud and 51% for noncohesive classes, based on the best performing parameter sets for surface suspended sediment concentrations. These results can be reliably extrapolated to similar macrotidal estuarine systems.Plain Language Summary Estuaries are transitional zones between terrestrial and marine environments (freshwater vs. saltwater). Because of their potential to transport nutrients and contaminants, quantifying the amount of sediment particles (mud and sand) exchanged at this interfacial area is essential for marine resources protection. Here, we use a realistic numerical model of sediment transport applied to an estuary and its adjacent continental shelf. Some parameters in the model are not well known and require calibration. This study aims at evaluating the impact of various model calibrations on simulated sediment exchanges at the estuary mouth. We found that the simulated sediment behavior is very sensitive to the selected model parameters. The quantity and direction of simulated exchanges are influenced by the parameterization of sediment erosion and settling (i.e., the rate at which particles are suspended and settle out). The dominant physical processes driving these exchanges are strongly influenced by river flow and tide amplitude. Sediment transfers are very intense and directed upstream during a short period in winter and compensated by weak export seaward during a long period in summer. Besides, uncertainties associated with simulated sediment exchanges are about 93% for mud and 51% for sands, which can reliably be applied to similar estu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.