Key Points• Ara-C is the mainstay of treatment for patients with AML, and life-threatening toxicities are common.• We demonstrated that cytidine deaminase downregulation predicts severe/lethal toxicities with cytarabine.Cytarabine (Ara-C) is the backbone of acute myeloid leukemia (AML) chemotherapy. Little is known about possible risk factors predictive for the frequent (ie, up to 16%) life-threatening or lethal toxicities caused by Ara-C. Ara-C is detoxified in the liver by a single enzyme, cytidine deaminase (CDA), coded by a gene known to be highly polymorphic. In this proof-of-concept study, we particularly investigated the role of the CDA poor metabolizer (PM) phenotype in Ara-C toxicities. CDA phenotyping (measurement of CDA residual activity in serum) and genotyping (search for the CDA*2 allelic variant) were performed in 58 adult patients with AML treated with the standard 713 (Ara-C 1 anthracyclines)protocol. Statistically significantly lower CDA activity was observed in patients experiencing severe/lethal toxicities as compared with patients who did not (1.5 6 0.7 U/mg vs 3.95 6 3.1 U/mg; Student t test P , .001). Subsequent receiver operating characteristic analysis identified a threshold in CDA activity (ie, 2 U/mg) associated with PM syndrome and increased risk of developing severe toxicities. Five percent of patients experienced lethal toxicities, all displaying CDA PM status (1.3 6 0.5 U/mg). In terms of efficacy, a trend toward higher response rates and longer progression-free survival and overall survival were observed in patients with low CDA activity. Taken together, the results of this study strongly suggest that CDA is a predictive marker of life-threatening toxicities in patients with AML receiving induction therapy with standard Ara-C.
This work reports a new chemical structure that (i) displays activity against the human malaria parasite
Plasmodium falciparum
at 3 stages of the parasitic cycle (blood stage, hepatic stage, and sexual stages), (ii) remains active against parasites that are resistant to the first-line treatment recommended by the World Health Organization (WHO) for the treatment of severe malaria (artemisinins), and (iii) reduces transmission of the parasite to the mosquito vector in a mouse model. This new molecule family could open the way to the conception of novel antimalarial drugs with an original multistage mechanism of action to fight against
Plasmodium
drug resistance and block interhuman transmission of malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.