The mechanism by which the Src family of protein-tyrosine kinases (SFKs) regulate mitogenesis and morphological changes induced by platelet-derived growth factor (PDGF) is not well known. The cholesterol-enriched membrane microdomains, caveolae, regulate PDGF receptor signalling in fibroblasts and we examined their role in SFK functions. Here we show that caveolae disruption by membrane cholesterol depletion or expression of the dominant-negative caveolin-3 DGV mutant impaired Src mitogenic signalling including kinase activation, Myc gene induction and DNA synthesis. The impact of caveolae on SFK function was underscored by the capacity of Myc to overcome mitogenic inhibition as a result of caveolae disruption. Using biochemical fractionation we show that caveolae-enriched subcellular membranes regulate the formation of PDGF-receptor-SFK complexes. An additional pool of PDGF-activated SFKs that was insensitive to membrane cholesterol depletion was characterised in non-caveolae fractions. SFK activation outside caveolae was linked to the capacity of PDGF to induce F-actin rearrangements leading to dorsal ruffle formation. Inhibition of phospholipase C γ (PLCγ), sphingosine kinase and heterotrimeric Gi proteins implicates a PLC γ–sphingosine-1-phosphate–Gi pathway for PDGF-induced SFK activation outside caveolae and actin assembly. In addition, the cytoplasmic tyrosine kinase Abl was identified as an important effector of this signalling cascade. We conclude that PDGF may stimulate two spatially distinct pools of SFKs leading to two different biological outcomes: DNA synthesis and dorsal ruffle formation.
The semaphorins constitute a large family of molecular signals with regulatory functions in neuronal development, angiogenesis, cancer progression and immune responses. Accumulating data indicate that semaphorins might trigger multiple signalling pathways, and mediate different and sometimes opposing effects, depending on the cellular context and the particular plexin-associated subunits of the receptor complex, which can include receptor-type or cytoplasmic tyrosine kinases such as MET, ERBB2, VEGFR2, FYN, FES, PYK2 and SRC. It has also been shown that a specific plexin can alternatively associate with different tyrosine kinase receptors, eliciting divergent signalling pathways and functional outcomes. Tyrosine phosphorylation is a pivotal post-translational protein modification that regulates intracellular signalling. Therefore, phosphorylation of tyrosines in the intracellular domain of plexins could determine or modify their interactions with additional signal transducers. Here, we discuss the potential relevance of tyrosine phosphorylation in semaphorin-induced signalling, with an emphasis on its probable role in dictating the choice between multiple pathways and functional outcomes. The identification of implicated tyrosine kinases will pave the way to target individual semaphorin-mediated functions.
BackgroundFormation of blood vessels requires the concerted regulation of an unknown number of genes in a spatial-, time- and dosage-dependent manner. Determining genes, which drive vascular maturation is crucial for the identification of new therapeutic targets against pathological angiogenesis.Methology/Principal FindingsWe accessed global gene regulation throughout maturation of the chick chorio-allantoic membrane (CAM), a highly vascularized tissue, using pan genomic microarrays. Seven percent of analyzed genes showed a significant change in expression (>2-fold, FDR<5%) with a peak occurring from E7 to E10, when key morphogenetic and angiogenic genes such as BMP4, SMO, HOXA3, EPAS1 and FGFR2 were upregulated, reflecting the state of an activated endothelium. At later stages, a general decrease in gene expression occurs, including genes encoding mitotic factors or angiogenic mediators such as CYR61, EPAS1, MDK and MYC. We identified putative human orthologs for 77% of significantly regulated genes and determined endothelial cell enrichment for 20% of the orthologs in silico. Vascular expression of several genes including ENC1, FSTL1, JAM2, LDB2, LIMS1, PARVB, PDE3A, PRCP, PTRF and ST6GAL1 was demonstrated by in situ hybridization. Up to 9% of the CAM genes were also overexpressed in human organs with related functions, such as placenta and lung or the thyroid. 21–66% of CAM genes enriched in endothelial cells were deregulated in several human cancer types (P<.0001). Interfering with PARVB (encoding parvin, beta) function profoundly changed human endothelial cell shape, motility and tubulogenesis, suggesting an important role of this gene in the angiogenic process.Conclusions/SignificanceOur study underlines the complexity of gene regulation in a highly vascularized organ during development. We identified a restricted number of novel genes enriched in the endothelium of different species and tissues, which may play crucial roles in normal and pathological angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.