Slow waves (1–4.5 Hz) are the most characteristic oscillations of deep non-rapid eye movement sleep. The EEG power in this frequency range (slow-wave activity, SWA) parallels changes in cortical connectivity (i.e., synaptic density) during development. In patients with attention-deficit/hyperactivity disorder (ADHD), prefrontal cortical development was shown to be delayed and global gray matter volumes to be smaller compared to healthy controls. Using data of all-night recordings assessed with high-density sleep EEG of 50 children and adolescents with ADHD (mean age: 12.2 years, range: 8–16 years, 13 female) and 86 age- and sex-matched healthy controls (mean age: 12.2 years, range: 8–16 years, 23 female), we investigated if ADHD patients differ in the level of SWA. Furthermore, we examined the effect of stimulant medication. ADHD patients showed a reduction in SWA across the whole brain (−20.5%) compared to healthy controls. A subgroup analysis revealed that this decrease was not significant in patients who were taking stimulant medication on a regular basis at the time of their participation in the study. Assuming that SWA directly reflects synaptic density, the present findings are in line with previous data of neuroimaging studies showing smaller gray matter volumes in ADHD patients and its normalization with stimulant medication.
Study Objectives The restorative function of sleep has been linked to a net reduction in synaptic strength. The slope of slow-waves, a major characteristic of non-rapid eye movement (NREM) sleep, has been shown to directly reflect synaptic strength, when accounting for amplitude changes across the night. In this study, we aimed to investigate overnight slope changes in the course of development in an age-, amplitude-, and region-dependent manner. Methods All-night high-density electroencephalography data were analyzed in a cross-sectional population of 60 healthy participants in the age range of 8–29 years. To control for amplitude changes across the night, we matched slow-waves from the first and the last hour of NREM sleep according to their amplitude. Results We found a reduction of slow-wave slopes from the first to the last hour of NREM sleep across all investigated ages, amplitudes, and most brain regions. The overnight slope change was largest in children and decreased toward early adulthood. A topographical analysis revealed regional differences in slope change. Specifically, for small amplitude waves the decrease was smallest in an occipital area, whereas for large amplitude waves, the decrease was smallest in a central area. Conclusions The larger slope decrease in children might be indicative of a boosted renormalization of synapses during sleep in childhood, which, in turn, might be related to increased plasticity during brain maturation. Regional differences in the extent of slow-wave slope reduction may reflect a “smart” down-selection process or, alternatively, indicate amplitude-dependent differences in the generation of slow-waves.
OBJECTIVES: During adolescence schizophrenia and major depressive disorder (MDD) increasingly emerge. Overlapping symptomatology during first presentation challenges the diagnostic process. Reduced sleep spindle density (SSD) was suggested as a biomarker in adults, discerning patients with schizophrenia from patients with depression or healthy controls (HC). We aimed to compare SSD in early-onset schizophrenia (EOS), with MDD, and HC, and to analyse associations of SSD with symptomatology and neurocognitive measures. METHODS: Automatic sleep spindle detection was performed on all-night high-density EEG (128 electrodes) data of 12 EOS, 19 MDD, and 57 HC (age range 9.8-19), allowing an age-and sex-matching of 1:2 (patients vs. HC). Severity of current symptoms and neurocognitive variables were assessed in all patients. RESULTS: SSD was defined between 13.75 and 14.50 Hz as within this frequency range SSD differed between EOS vs. HC in bin by bin analyses (12-15 Hz). In EOS, SSD was lower over 27 centro-temporal electrodes compared to HC and over 9 central electrodes compared to MDD. Reduced SSD in EOS compared to MDD and HC was accompanied by a high variability of SSD in all adolescents. SSD did not differ between MDD and HC. In the pooled sample of patients, lower SSD was associated with more severe Positive and Negative Symptoms Scale total score, more impaired memory consolidation and processing speed. CONCLUSION: A high variability of SSD in all adolescents may reflect the evolving character of SSD. The association of reduced SSD with the symptom dimension of impaired cognition cuts across diagnostical entities.
Objective/Background Learning of a visuomotor adaptation task during wakefulness leads to a local increase in slow-wave activity (SWA, EEG power between 1 and 4.5 Hz) during subsequent deep sleep. Here, we examined this relationship between learning and SWA in children with attentiondeficit/hyperactivity disorder (ADHD). Patients/Methods Participants were 15 children with ADHD (9.7-14.8 y, one female) and 15 age-matched healthy controls (9.6-15.7 y, three female). After the completion of a visuomotor adaptation task in the evening, participants underwent an all-night high-density (HD, 128 electrodes) sleep-EEG measurement. Results Healthy control children showed the expected right-parietal increase in sleep SWA after visuomotor learning. Despite no difference in visuomotor learning, the local up-regulation during sleep was significantly reduced in ADHD patients compared to healthy controls. Conclusions Our results indicate that the local, experience-dependent regulation of SWA is different in ADHD patients. Because the customarily observed heightened regulation in children was related to sensitive period maturation, ADHD patients may lack certain sensitive periods or show a developmental delay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.