Cellular ATP depletion in diverse cell types results in the net conversion of monomeric G-actin to polymeric F-actin and is an important aspect of cellular injury in tissue ischemia. We propose that this conversion results from altering the ratio of ATP-G-actin and ADP-G-actin, causing a net decrease in the concentration of thymosinactin complexes as a consequence of the differential affinity of thymosin  4 for ATP-and ADP-G-actin. To test this hypothesis we examined the effect of ATP depletion induced by antimycin A and substrate depletion on actin polymerization, the nucleotide state of the monomer pool, and the association of actin monomers with thymosin and profilin in the kidney epithelial cell line LLC-PK 1 . ATP depletion for 30 min increased F-actin content to 145% of the levels under physiological conditions, accompanied by a corresponding decrease in G-actin content. Cytochalasin D treatment did not reduce Factin formation during ATP depletion, indicating that it was predominantly not because of barbed end monomer addition. ATP-G-actin levels decreased rapidly during depletion, but there was no change in the concentration of ADP-G-actin monomers. The decrease in ATP-G-actin levels could be accounted for by dissociation of the thymosin-G-actin binary complex, resulting in a rise in the concentration of free thymosin  4 from 4 to 11 M. Increased detection of profilin-actin complexes during depletion indicated that profilin may participate in catalyzing nucleotide exchange during depletion. This mechanism provides a biochemical basis for the accumulation of F-actin aggregates in ischemic cells.Recent progress in understanding the function of actin-binding proteins has clarified their role in a number of processes in normal cells, including motility and the establishment of cell polarity (1, 2). However, our understanding of actin dynamics and the roles of actin-binding proteins under conditions of cellular stress pertinent to pathophysiology is currently limited (3). For example, in tissue ischemia the lack of oxygen and nutrients is known to rapidly result in decreased intracellular ATP levels and increased ADP levels, varying in degree with the severity and duration of ischemic time (4, 5). These results have been associated with a concomitant decrease in cellular G-actin and a corresponding increase in the fraction of polymerized actin observed both in vivo and in vitro (6 -11), with the resultant F-actin accumulating as dispersed aggregates throughout the cytoplasm (12, 13), notably in the perinuclear region (14 -16).Cells maintain a high potential energy for actin polymerization by maintaining a high total actin concentration and reserving a large fraction of this actin in a pool of monomers available for polymerization. This is of considerable functional importance for the cell, because the rate of actin polymerization is directly proportional to the local free monomer concentration (17). However, this high concentration requires the deployment of actin-binding proteins to maintain the monomer poo...
Apical membrane of renal proximal tubule cells is extremely sensitive to ischemia, with structural alterations occurring within 5 min. These changes are felt secondary to actin cytoskeletal disruption, yet the mechanism responsible is unknown. Actin depolymerizing factor (ADF), a 19-kDa actin-binding protein, has recently been shown to play an important role in regulation of actin filament dynamics. Because ADF is known to mediate pH-dependent F-actin binding, depolymerization, and severing, and because ADF activation occurs by dephosphorylation, we questioned whether ADF played a role in microvilli microfilament disruption during ischemia. To test our hypothesis, we induced renal ischemia in the rat with the clamp model. Initial immunofluorescence and Western blot studies on cortical tissue documented the presence of ADF in proximal tubule cells. Under physiological conditions, ADF was distributed homogeneously throughout the cytoplasm, primarily in the Triton X-100-soluble fraction, and both phosphorylated (pADF) and nonphosphorylated forms were identified. During ischemia, marked alterations occurred. Intraluminal vesicle/bleb structures contained extremely high concentrations of ADF along with G-actin, but not F-actin. Western blot showed a rapidly occurring duration-dependent dephosphorylation of ADF. At 0–30 min of ischemia, total ADF levels were unchanged, whereas pADF decreased significantly to 72% and 19% of control levels, at 5 and 15 min, respectively. Urine collected under physiological conditions did not contain ADF or actin, whereas urine collected after 30 min of ischemia contained both ADF and actin. Reperfusion was associated with normalization of cellular pADF levels, pADF intracellular distribution, and repair of apical microvilli. These data suggest that activation of ADF during ischemia via dephosphorylation is, in part, responsible for apical actin disruption resulting in microvillar destruction and formation of intraluminal vesicles.
Breakdown of proximal tubule cell apical membrane microvilli is an early-occurring hallmark of ischemic acute renal failure. Intracellular mechanisms responsible for these apical membrane changes remain unknown, but it is known that actin cytoskeleton alterations play a critical role in this cellular process. Our laboratory previously demonstrated that ischemia-induced cell injury resulted in dephosphorylation and activation of the actin-binding protein, actin depolymerizing factor [(ADF); Schwartz, N, Hosford M, Sandoval RM, Wagner MC, Atkinson SJ, Bamburg J, and Molitoris BA. Am J Physiol Renal Fluid Electrolyte Physiol 276: F544-F551, 1999]. Therefore, we postulated that ischemia-induced ADF relocalization from the cytoplasm to the apical microvillar microfilament core was an early event occurring before F-actin alterations. To directly investigate this hypothesis, we examined the intracellular localization of ADF in ischemic rat cortical tissues by immunofluorescence and quantified the concentration of ADF in brush-border membrane vesicles prepared from ischemic rat kidneys by using Western blot techniques. Within 5 min of the induction of ischemia, ADF relocalized to the apical membrane region. The length of ischemia correlated with the time-related increase in ADF in isolated brush-border membrane vesicles. Finally, depolymerization of microvillar F-actin to G-actin was documented by using colocalization studies for G- and F-actin. Collectively, these data indicate that ischemia induces ADF activation and relocalization to the apical domain before microvillar destruction. These data further suggest that ADF plays a critical role in microvillar microfilament destruction and apical membrane damage during ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.