Site-specific protein labeling is an important technique in protein chemistry and is used for diverse applications ranging from creating protein conjugates to protein immobilization. Enzymatic reactions, including protein prenylation, have been widely exploited as methods to accomplish site-specific labeling. Enzymatic prenylation is catalyzed by prenyltransferases, including protein farnesyltransferase (PFTase) and geranylgeranyltransferase type I (GGTase-I), both of which recognize C-terminal CaaX motifs with different specificities and transfer prenyl groups from isoprenoid diphosphates to their respective target proteins. A number of isoprenoid analogues containing bioorthogonal functional groups have been used to label proteins of interest via PFTase-catalyzed reaction. In this study, we sought to expand the scope of prenyltransferase-mediated protein labeling by exploring the utility of rat GGTase-I (rGGTase-I). First, the isoprenoid specificity of rGGTase-I was evaluated by screening eight different analogues and it was found that those with bulky moieties and longer backbone length were recognized by rGGTase-I more efficiently. Taking advantage of the different substrate specificities of rat PFTase (rPFTase) and rGGTase-I, we then developed a simultaneous dual labeling method to selectively label two different proteins by using isoprenoid analogue and CaaX substrate pairs that were specific to only one of the prenyltransferases. Using two model proteins, green fluorescent protein with a C-terminal CVLL sequence (GFP-CVLL) and red fluorescent protein with a C-terminal CVIA sequence (RFP-CVIA), we demonstrated that when incubated together with both prenyltransferases and the selected isoprenoid analogues, GFP-CVLL was specifically modified with a ketone-functionalized analogue by rGGTase-I and RFP-CVIA was selectively labeled with an alkyne-containing analogue by rPFTase. By switching the ketone-containing analogue to an azide-containing analogue, it was possible to create protein tail-to-tail dimers in a one-pot procedure through the copper (I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. Overall, with the flexibility of using different isoprenoid analogues, this system greatly extends the utility of protein labeling using prenyltransferases.
Here, we introduce protein-lipidation quantitation (PLQ)-the first method for quantitative analysis of both a substrate and a product of protein lipidation in a biologically relevant context. Such analysis is required to study roles of protein lipidation in cellular regulation. In PLQ, the substrate is fused with a fluorescent protein to facilitate quantitative detection of both the nonlipidated substrate and the lipidated product. When expressed in cells with endogenous lipidation activity, the substrate is intracellularly lipidated. Following cell lysis and sampling crude cell lysate for analysis, the substrate and the product are separated by surfactant-mediated capillary electrophoresis (CE) and quantitated by integrating fluorescence intensity over respective CE peaks. In this work, we prove PLQ in principle and demonstrate its robustness to changes in structures of the substrate and lipid donor. Finally, PLQ analysis confirms a hypothesized link between a mutation in p53 and cellular prenylation activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.