Understanding wildfire rate of spread (RoS) is often a key objective of many fire behavior modelling and measurement exercises. Using instrumented moderate scale laboratory burns we provide an assessment of eight different methods of flame front RoS determination, including visible imagery (VIS) analysis techniques, use of thermocouple arrays, and four thermal infrared (IR) image analysis approaches. We are able to (1) determine how measurement approach influences derived RoS, and (2) recommend the best method to reproduce the accepted standard (Thermocouple Grid Array measurement) RoS without ground sampling. We find that derived RoS is statistically significantly influenced by the measurement approach, and that failing to fully account for directionality of the RoS may result in significant error. We identify one of the thermal infrared imaging methods (described in Paugam et al. 2013), as the most appropriate for providing rate and direction of spread at these scales of measurement.
A modelling framework to spatially score the impacts from wildland fire effects on specific resources and assets was developed for and applied to the province of Ontario, Canada. This impact model represents the potential ‘loss’, which can be used in the different decision-making methods common in fire response operations (e.g. risk assessment, decision analysis and expertise-based). Resources and assets considered include point features such as buildings, linear features such as transmission lines, and areal features such as forest management areas. Three categories of fire impacts were included: social, economic and emergency response. Category-specific scores were determined through expert elicitation and then adjusted to account for fire intensity. Expert elicitation was shown to compare favourably with other methods in terms of the complexity, time, set-up cost and operational use. When compared with historical fire data from Ontario, it was found that impact model scores were associated with the objective to suppress or monitor fires. The model framework provides a consistent pre-fire impact assessment to support individual fire response decisions. The impact assessment can also represent the total impact for areas of Ontario that do not have prescriptive response in a formal fire response plan.
This study presents a model developed using a risk-based framework that is calibrated by experts, and provides a spatially explicit measure of need for aerial detection daily in Ontario, Canada. This framework accounts for potential fire occurrence, behaviour and impact as well as the likelihood of detection by the public. A three-step assessment process of risk, opportunity and tolerance is employed, and the results represent the risk of not searching a specified area for the detection of wildland fires. Subjective assessment of the relative importance of these factors was elicited from Ontario Ministry of Natural Resources and Forestry experts to develop an index that captures their behaviour when they plan aerial detection patrol routes. The model is implemented to automatically produce a province-wide, fine-scale risk index map each day. A retrospective analysis found a statistically significant association between points that aerial detection patrols passed over and their aerial detection demand index values: detection patrols were more likely to pass over areas where the index was higher.
Wildland fire management decision-makers need to quickly understand large amounts of quantitative information under stressful conditions. Categorization and visualization “schemes” have long been used to help, but how they are done affects the speed and accuracy of interpretation. Using traditional fire management schemes can unduly restrict the design of new products. Our design process for Ontario’s fine-scale, spatially explicit, daily fire occurrence prediction (FOP) models led us to develop guidance for designing new schemes. We show selected historical fire management schemes and describe our method. It includes specifying goals and requirements, exploring design options and making trade-offs. The design options include gradient continuity, hue selection, range completeness and scale linearity. We apply our method to a case study on designing the scheme for Ontario’s FOP models. We arrived at a smooth, nonlinear scale that accommodates data spanning many orders of magnitude. The colouring draws attention according to levels of concern, reveals meaningful spatial patterns and accommodates some colour vision deficiencies. Our method seems simple now but reconciles complex considerations and is useful for mapping many other datasets. Our method improved the clarity and ease of interpretation of several information products used by fire management decision-makers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.