Brownian dynamics (BD) is a very efficient coarse-grained simulation technique which is based on Einstein's explanation of the diffusion of colloidal particles. On these length scales well beyond the solvent granularity, a treatment of the electrostatic interactions on a Debye-Hückel (DH) level with its continuous ion densities is consistent with the implicit solvent of BD. On the other hand, since many years BD is being used as a workhorse simulation technique for the much smaller biological proteins. Here, the assumption of a continuous ion density, and therefore the validity of the DH electrostatics, becomes questionable. We therefore investigated for a few simple cases how far the efficient DH electrostatics with point charges can be used and when the ions should be included explicitly in the BD simulation. We find that for large many-protein scenarios or for binary association rates, the conventional continuum methods work well and that the ions should be included explicitly when detailed association trajectories or protein folding are investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.