SUMMARYSleep is essential for recovery and performance in elite athletes. While actigraphy-based studies revealed suboptimal sleep in athletes, information on their subjective experience of sleep is scarce. Relatively unexplored is also the extent to which athletes' sleep is adversely affected by environmental conditions and daytime behaviours, that is sleep hygiene. This study aimed to provide insight in sleep quantity, quality and its putative association with sleep hygiene. Participants were 98 elite (youth) athletes competing at the highest (inter-)national level. Sleep quantity, quality and sleep hygiene were assessed once covering a 1-month period by using established (sub)clinical questionnaires, and repeatedly during 7 consecutive days. Sleep quality was generally healthy, although 41% of all athletes could be classified as 'poor sleeper', and 12% were identified as having a sleep disorder. Daily self-monitoring revealed sleep durations of 8:11 AE 0:45 h, but elevated wake after sleep onset of 13 AE 19 min. Sleep quality, feeling refreshed, and morning vigor were moderate at best. Regarding sleep hygiene, general measures revealed irregular sleep-wake patterns, psychological strain and activating pre-sleep behaviours. At the daily level, blue-light exposure and late-evening consumption of heavy meals were frequently reported. General sleep hygiene revealed significant associations with sleep quality (0.45 < r > 0.50; P < 0.001). Results indicate that there is ample room for optimization, specifically in onset latency and in wake after sleep onset. Subtle improvements in sleep seem possible, and optimizing sleep hygiene, such as regular sleep-wake patterns and reducing psychological strain, may facilitate this sleep upgrading process.
Sleep is crucial for recovery and skill acquisition in athletes. Paradoxically, athletes often encounter difficulties initiating and maintaining sleep, while having sufficient sleep opportunity. Blue (short-wavelength) light as emitted by electronic screens is considered a potential sleep thief, as it suppresses habitual melatonin secretion. The current study sought to investigate whether blocking short-wavelength light in the evening can improve sleep onset latency and potentially other sleep parameters among recreational athletes. The study had a within-subject crossover design. Fifteen recreational athletes, aged between 18 and 32 years (12 females, 3 males), were randomly assigned to start the intervention period with either the light restriction condition (LR; amber-lens glasses), or the no-light restriction condition (nLR; transparent glasses). Sleep hygiene practices, actigraphy and diary-based sleep estimates were monitored during four consecutive nights within each condition. Sleep hygiene practices did not significantly differ between conditions. Results indicate that blocking short-wavelength light in the evening, as compared to habitual light exposure, significantly shortened subjective sleep onset latency (Δ = 7 min), improved sleep quality (Δ = 0.6; scale 1-10), and increased alertness the following morning. Actigraphy-based sleep estimates showed no significant differences between conditions. Blocking short-wavelength light in the evening by means of amber-lens glasses is a cost-efficient and promising means to improve subjective sleep estimates among recreational athletes in their habitual home environment. The relatively small effects of the current study may be strengthened by additionally increasing morning-and daytime light exposure and, potentially, by reducing the alerting effects of media use before bedtime.
Despite an elevated recovery need, research indicates that athletes often exhibit relatively poor sleep. Timing and consolidation of sleep is driven by the circadian system, which requires periodic light-dark exposure for stable entrainment to the 24-hour day, but is often disturbed due to underexposure to light in the morning (e.g. low-level indoor lighting) and overexposure to light in the evening (e.g. environmental and screen-light). This study examined whether combining fixed sleep schedules with light regulation leads to more consolidated sleep. Morning light exposure was increased using light-emitting goggles, whereas evening light exposure was reduced using amber-lens glasses. Using a within-subject crossover design, twenty-six athletes (14 female, 12 male) were randomly assigned to start the intervention with the light-regulation-week or the no light-regulation-week. Sleep was monitored by means of sleep diaries and actigraphy. Due to low protocol adherence regarding the fixed sleep-wake schedules, two datasets were constructed; one including athletes who kept a strict sleep-wake schedule (N = 8), and one that also included athletes with a more lenient sleep-wake schedule (N = 25). In case of a lenient sleep-wake schedule, light regulation improved self-reported sleep onset latency (Δ SOL = 8 min). This effect was stronger (Δ SOL = 17 min) and complemented by enhanced subjective sleep quality in case of a strict sleep-wake schedule. None of the actigraphy-based estimates differed significantly between conditions. To conclude, light regulation may be considered a potentially effective strategy to improve subjective sleep, but less obtrusive methods should be explored to increase protocol compliance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.