Murine retroviral vectors carrying an enhancer detection cassette were used to generate 95 transgenic lines of fish in which reporter expression is observed in distinct patterns during embryonic development. We mapped 65 insertion sites to the as yet unfinished zebrafish genome sequence. Many integrations map close to previously known developmental genes, including transcription factors of the Pax, Hox, Sox, Pou, Otx, Emx, zinc-finger and bHLH gene families. In most cases, the activated provirus is located in, or within a 15 kb interval around, the corresponding transcriptional unit. The exceptions include four insertions into a gene desert on chromosome 20 upstream of sox11b, and an insertion upstream of otx1. In these cases, the activated insertions are found at a distance of between 32 kb and 132 kb from the coding region. These as well as seven other insertions described here identify genes that have recently been associated with ultra conserved non-coding elements found in all vertebrate genomes.
Many biological processes involve large-scale changes in membrane shape. Computer simulations of these processes are challenging since they occur across a wide range of spatiotemporal scales that cannot be investigated in full by any single current simulation technique. A potential solution is to combine different levels of resolution through a multiscale scheme. Here, we present a multiscale algorithm that backmaps a continuum membrane model represented as a dynamically triangulated surface (DTS) to its corresponding molecular model based on the coarse-grained (CG) Martini force field. Thus, we can use DTS simulations to equilibrate slow large-scale membrane conformational changes and then explore the local properties at CG resolution. We demonstrate the power of our method by backmapping a vesicular bud induced by binding of Shiga toxin and by transforming the membranes of an entire mitochondrion to near-atomic resolution. Our approach opens the way to whole cell simulations at molecular detail.
Ribbon synapses of cochlear inner hair cells (IHCs) operate with high rates of neurotransmission; yet, the molecular regulation of synaptic vesicle (SV) recycling at these synapses remains poorly understood. Here, we studied the role of endophilins‐A1‐3, endocytic adaptors with curvature‐sensing and curvature‐generating properties, in mouse IHCs. Single‐cell RT–PCR indicated the expression of endophilins‐A1‐3 in IHCs, and immunoblotting confirmed the presence of endophilin‐A1 and endophilin‐A2 in the cochlea. Patch‐clamp recordings from endophilin‐A‐deficient IHCs revealed a reduction of Ca2+ influx and exocytosis, which we attribute to a decreased abundance of presynaptic Ca2+ channels and impaired SV replenishment. Slow endocytic membrane retrieval, thought to reflect clathrin‐mediated endocytosis, was impaired. Otoferlin, essential for IHC exocytosis, co‐immunoprecipitated with purified endophilin‐A1 protein, suggestive of a molecular interaction that might aid exocytosis–endocytosis coupling. Electron microscopy revealed lower SV numbers, but an increased occurrence of coated structures and endosome‐like vacuoles at IHC active zones. In summary, endophilins regulate Ca2+ influx and promote SV recycling in IHCs, likely via coupling exocytosis to endocytosis, and contributing to membrane retrieval and SV reformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.