In mice sensitized to the four allergens tested, EPIT was as efficacious as SCIT, considered as the reference immunotherapy. These first results have to be confirmed by clinical studies.
Epicutaneous immunotherapy onto intact skin has proved to be an efficient and safe alternative treatment of allergy in an animal model with various allergens and in children for cow’s milk allergy. The aim of this study was to analyze the different steps of the immunological handling of the allergen when deposited on intact skin using an epicutaneous delivery system and its immune consequences in sensitized BALB/c mice. As expected, when applied on intact skin, OVA exhibits neither a passive passage through the skin nor any detectable systemic delivery. The current study demonstrates that, after a prolonged application on intact skin, OVA is taken up by dendritic cells in the superficial layers of the stratum corneum and transported, after internalization, to the draining lymph nodes, with variations according to the previous level of sensitization of the mice. When OVA is applied with the epicutaneous delivery system repeatedly, specific local and systemic responses are down-modulated in association with the induction of regulatory T cells. Besides providing new insights into skin function in the presence of allergens, this study indicates that the skin might have a tolerogenic role, at least when kept intact.
BackgroundFood allergy may affect the gastrointestinal tract and eosinophilia is often associated with allergic gastrointestinal disorders. Allergy to peanuts is a life-threatening condition and effective and safe treatments still need to be developed. The present study aimed to evaluate the effects of sustained oral exposure to peanuts on the esophageal and jejunal mucosa in sensitized mice. We also evaluated the effects of desensitization with epicutaneous immunotherapy (EPIT) on these processes.MethodsMice were sensitized by gavages with whole peanut protein extract (PPE) given with cholera toxin. Sensitized mice were subsequently exposed to peanuts via a specific regimen and were then analysed for eosinophilia in the esophagus and gut. We also assessed mRNA expression in the esophagus, antibody levels, and peripheral T-cell response. The effects of EPIT were tested when intercalated with sensitization and sustained oral peanut exposure.ResultsSustained oral exposure to peanuts in sensitized mice led to severe esophageal eosinophilia and intestinal villus sub-atrophia, i.e. significantly increased influx of eosinophils into the esophageal mucosa (136 eosinophils/mm2) and reduced villus/crypt ratios (1.6±0.15). In the sera, specific IgE levels significantly increased as did secretion of Th2 cytokines by peanut-reactivated splenocytes. EPIT of sensitized mice significantly reduced Th2 immunological response (IgE response and splenocyte secretion of Th2 cytokines) as well as esophageal eosinophilia (50 eosinophils/mm2, p<0.05), mRNA expression of Th2 cytokines in tissue - eotaxin (p<0.05), IL-5 (p<0.05), and IL-13 (p<0.05) -, GATA-3 (p<0.05), and intestinal villus sub-atrophia (2.3±0.15). EPIT also increased specific IgG2a (p<0.05) and mRNA expression of Foxp3 (p<0.05) in the esophageal mucosa.ConclusionsGastro-intestinal lesions induced by sustained oral exposure in sensitized mice are efficaciously treated by allergen specific EPIT.
Allergen-specific immunotherapy has been proposed as an attractive strategy to actively treat food allergy using the following three different immunotherapy routes: oral (OIT), sublingual (SLIT) and epicutaneous (EPIT) immunotherapy. Regulatory T cells (Tregs) have been shown to have a pivotal role in the mechanisms of immunotherapy. The aim of this study was to compare the phenotype and function of Tregs induced in peanut-sensitized BALB/c mice using these three routes of treatment. We show that although EPIT, OIT and SLIT were all able to effectively desensitize peanutsensitized mice, they induced different subsets of Tregs. Foxp3+ Tregs were induced by the three treatment routes but with greater numbers induced by EPIT. EPIT and OIT also increased the level of LAP+ Tregs, whereas SLIT induced IL-10+ cells. The suppressive activity of EPIT-induced Tregs did not depend on IL-10 but required CTLA-4, whereas OIT acted through both mechanisms and SLIT was strictly dependent on IL-10. Moreover, the three routes influenced the homing properties of induced Tregs differently, with a larger repertoire of chemokine receptors expressed by EPIT-induced Tregs compared with OIT-and SLIT-induced cells, resulting in different protective consequences against allergen exposure. Furthermore, whereas OIT-or SLIT-induced Tregs lost their suppressive activities after treatment was discontinued, the suppressive activities of EPIT-induced Tregs were still effective 8 weeks after the end of treatment, suggesting the induction of a more long-lasting tolerance. In summary, EPIT, OIT and SLIT mediated desensitization through the induction of different subsets of Tregs, leading to important differences in the subsequent protection against allergen exposure and the possible induction of tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.