Genetic studies have identified the membrane protein EIN2 (ethylene insensitive 2) as a central component of ethylene signalling in Arabidopsis. In addition, EIN2 might take part in multiple hormone signalling pathways and in response to pathogens as demonstrated by recent genetic and biochemical studies. Here we show, by an integrated approach using in vivo and in vitro fluorescence techniques, that EIN2 is localized at the ER (endoplasmic reticulum) membrane where it shows specific interaction with the ethylene receptor protein ETR1.
Ethylene insensitive 2 (EIN2), an integral membrane protein of the ER network, has been identified as the central regulator of the ethylene signaling pathway. Still, the mechanism by which the ethylene signal is transferred from the receptors to EIN2 has not been solved yet. Here, we show that protein phosphorylation is a key mechanism to control the interaction of EIN2 and the receptors. In vivo and in vitro fluorescence studies reveal that the kinase domain of the receptors is essential for the interaction. Cyanide, an ethylene agonist, which is known to reduce auto-phosphorylation of the ethylene receptor ethylene resistant 1 (ETR1) or a mutation in the kinase domain of ETR1 that prevents auto-phosphorylation (H353A), increases the affinity of the receptors for EIN2. On the other hand, mimicking permanent auto-phosphorylation of ETR1 as in the mutant H353E releases the EIN2-ETR1 interaction from the control by the plant hormone. Based on our data, we propose a novel model on the integration of EIN2 in the ethylene signaling cascade.
The gaseous plant hormone ethylene regulates many processes of high agronomic relevance throughout the life span of plants. A central element in ethylene signaling is the endoplasmic reticulum (ER)-localized membrane protein ethylene insensitive2 (EIN2). Recent studies indicate that in response to ethylene, the extra-membranous C-terminal end of EIN2 is proteolytically processed and translocated from the ER to the nucleus. Here, we report that the conserved nuclear localization signal (NLS) mediating nuclear import of the EIN2 C-terminus provides an important domain for complex formation with ethylene receptor ethylene response1 (ETR1). EIN2 lacking the NLS domain shows strongly reduced affinity for the receptor. Interaction of EIN2 and ETR1 is also blocked by a synthetic peptide of the NLS motif. The corresponding peptide substantially reduces ethylene responses in planta. Our results uncover a novel mechanism and type of inhibitor interfering with ethylene signal transduction and ethylene responses in plants. Disruption of essential protein-protein interactions in the ethylene signaling pathway as shown in our study for the EIN2-ETR1 complex has the potential to guide the development of innovative ethylene antagonists for modern agriculture and horticulture.
The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.
Reverse genetics have identified receptors and downstream components involved in ethylene signaling. 3,4 In these studies EIN2, an integral membrane protein of the ER network has been recognized as the central component of the signaling pathway.5 Sequence analysis suggests that EIN2 consists of a membrane-intrinsic amino-terminal domain (aa 1-461) and a membrane-extrinsic carboxyl-terminal domain (aa 462-1,294). Expression of the carboxyl-terminal domain on its own in an ein2 loss-of-function background is sufficient to constitutively activate ethylene responses suggesting that the membrane extrinsic part of EIN2 is vital for ethyleneinduced gene expression.5 Based on epistasis analysis, EIN2 is thought to operate downstream of the ethylene receptor family, and the soluble protein kinase CTR1, 6 but upstream of the EIN3/EIL transcription factor family. Still the mechanism by which the signal is transferred from the ethylene receptors-a family consisting of five members in Arabidopsis thaliana named ETR1, ETR2, ERS1, ERS2 and EIN4-to EIN2 has not been resolved yet. Recent in vivo and in vitro fluorescence studies from our lab have shown that EIN2 interacts at the ER membrane with the ethylene receptor protein ETR1. 7To clarify whether other members of the ethylene receptor family also form complexes with the membrane-extrinsic domain of EIN2, we have analyzed complex formation of EIN2 with ERS1, ETR2, ERS2 and EIN4 by Fluorescence Resonance Energy Transfer (FRET).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.