BackgroundAvian trichomonosis is known as a widespread disease in columbids and passerines, and recent findings have highlighted the pathogenic character of some lineages found in wild birds. Trichomonosis can affect wild bird populations including endangered species, as has been shown for Mauritian pink pigeons Nesoenas mayeri in Mauritius and suggested for European turtle doves Streptopelia turtur in the UK. However, the disease trichomonosis is caused only by pathogenic lineages of the parasite Trichomonas gallinae. Therefore, understanding the prevalence and distribution of both potentially pathogenic and non-pathogenic T. gallinae lineages in turtle doves and other columbids across Europe is relevant to estimate the potential impact of the disease on a continental scale.ResultsWe examined 281 samples from four wild columbid species for Trichomonas infection and determined the genetic lineages. The overall prevalence was 74%. There were significant differences between the species (P = 0.007). The highest prevalence was found in stock doves Columba oenas (86%, n = 79) followed by wood pigeons Columba palumbus (70%, n = 61) and turtle doves (67%, n = 65), while three of five collared doves Streptopelia decaocto (60%) were infected. We found seven different lineages, including four lineages present in columbids in the UK, one lineage already described from Spain and three new lineages, one of those found in a single turtle dove migrating through Italy and another one found in a breeding stock dove. Stock doves from Germany and collared doves from Malta were infected with a potentially pathogenic lineage (lineage A/B), which is known to cause lesions and mortality in columbids, raptors and finches.ConclusionsGenerally, turtle doves showed high prevalence of Trichomonas infection. Furthermore, the potentially pathogenic lineage A/B (or genotype B according to previous literature) was found in a recovering stock dove population. Both findings are worrying for these columbid species due to the occasional epidemic character of trichomonosis, which can have severe negative effects on populations.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-017-2170-0) contains supplementary material, which is available to authorized users.
BackgroundUnderstanding how past climatic oscillations have affected organismic evolution will help predict the impact that current climate change has on living organisms. The European turtle dove, Streptopelia turtur, is a warm-temperature adapted species and a long distance migrant that uses multiple flyways to move between Europe and Africa. Despite being abundant, it is categorized as vulnerable because of a long-term demographic decline. We studied the demographic history and population genetic structure of the European turtle dove using genomic data and mitochondrial DNA sequences from individuals sampled across Europe, and performing paleoclimatic niche modelling simulations.ResultsOverall our data suggest that this species is panmictic across Europe, and is not genetically structured across flyways. We found the genetic signatures of demographic fluctuations, inferring an effective population size (Ne) expansion that occurred between the late Pleistocene and early Holocene, followed by a decrease in the Ne that started between the mid Holocene and the present. Our niche modelling analyses suggest that the variations in the Ne are coincident with recent changes in the availability of suitable habitat.ConclusionsWe argue that the European turtle dove is prone to undergo demographic fluctuations, a trait that makes it sensitive to anthropogenic impacts, especially when its numbers are decreasing. Also, considering the lack of genetic structure, we suggest all populations across Europe are equally relevant for conservation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0817-7) contains supplementary material, which is available to authorized users.
17Procellariiform seabirds have extreme life histories; they are very long-lived, first breed when 18 relatively old, lay single egg clutches, both incubation and chick-rearing are prolonged and chicks 19 exhibit slow growth. The early part of the breeding season is crucial, when pair bonds are re-20 established and partners coordinate their breeding duties, but is a difficult period to study in burrow-21 nesting species. Miniature geolocators (Global Location Sensors or GLS loggers) now offer a way to 22 collect data on burrow attendance, as well as determine at-sea movements. We studied the early 23 breeding season in thin-billed prions Pachyptila belcheri breeding at New Island, Falkland Islands. 24Males and females arrived back at the colony at similar times, with peak arrival in the last days of 25 September. However, males spent more time on land during the pre-laying period, presumably 26 defending and maintaining the burrow and maximising mating opportunities. Males departed later than 27 females, and carried out a significantly shorter pre-laying exodus. Males took on the first long 28 incubation shift, whereas females returned to sea soon after egg laying. During the pre-laying exodus 29 and incubation, males and females travelled at similar speeds (>250km per day) and were widely 30 distributed over large areas of the Patagonian Shelf. Inter-annual differences in oceanographic 31 conditions were stronger during the incubation than during the pre-laying exodus and were matched by 32 stronger differences in distribution. The study thus suggests that extended trips and flexible 33 distribution enable thin-billed prions to meet the high energy demands of egg production and 34 incubation despite low productivity in waters around the colony during the early summer.
Avian trichomonosis is a widespread disease in columbids and other birds, caused by ingestion of the unicellular flagellate Trichomonas gallinae which proliferate primarily in the upper respiratory tracts. Studies using genetic analyses have determined some highly pathogenic lineages in birds, but the prevalence and distribution of potentially pathogenic and non-pathogenic T. gallinae lineages in wild birds is still not well known. We examined 440 oral swab samples of 35 bird species collected between 2015 and 2017 in Hesse, central Germany, for Trichomonas spp. infection and for determining the genetic lineages. Of these birds, 152 individuals were caught in the wild and 288 individuals were admitted from the wild to a veterinary clinic. The overall Trichomonas spp. prevalence was 35.6%. We observed significant differences between bird orders, with the highest prevalence in owls (58%) and columbids (50%), while other orders had slightly lower prevalences, with 36% in Accipitriformes, 28% in Falconiformes and 28% in Passeriformes. Among 71 successfully sequenced samples, we found 13 different haplotypes, including two previously described common lineages A/B (20 samples) and C/V/N (36 samples). The lineage A/B has been described as pathogenic, causing lesions and mortality in columbids, raptors and finches. This lineage was found in 11 of the 35 species, including columbids (feral pigeon, woodpigeon, stock dove), passerines (greenfinch, chaffinch, blackbird) and raptors (common kestrel, sparrowhawk, red kite, peregrine falcon and common buzzard). One new lineage (R) was found in a sample of a chaffinch. In conclusion, we found that the prevalence of Trichomonas spp. infection in wild birds was high overall, and the potentially pathogenic lineage A/B was widespread. Our findings are worrying, as epidemic outbreaks of trichomonosis have already been observed in Germany in several years and can have severe negative effects on bird populations. This disease may add to the multiple pressures that birds face in areas under high land-use intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.