Abstract. Land use and corresponding habitat loss are major drivers of local species extinctions. Orthoptera as important grassland herbivores showed different responses to land-use intensity in different studies, and the susceptibility of this group remains unclear. We sampled annually for seven years 150 temperate grassland sites across three regions in Germany, for which land-use gradients were quantified as mowing, grazing, and fertilization intensity. We analyzed the effects of land-use intensity on orthopteran diversity and community abundance. To describe species-specific responses to environmental gradients, we employed a new approach termed "niche model," coupled with a randomization procedure, which is sensitive even for rare species for which trends may otherwise be difficult to detect. Based on abundanceweighted means for each species, we quantified the species' occurrence along land-use gradients and identified potential losers and winners of intensive land use. Overall, high land-use intensity negatively affected orthopteran diversity across years and regions, corresponding to decreases with high fertilization, mowing, and grazing intensity. Intensive mowing and grazing negatively affected abundance. Diversity and abundance increased with the time after the last cut. The niche model detected 15 of 29 Orthoptera species as losers of land use, showing significantly higher abundance in grasslands with low-intensity land use. Two species were winners of high land-use intensity, whereas the remaining 12 were assigned as opportunists. Most species were losers of high fertilization intensity, followed by frequent mowing. Grazing intensity was least detrimental at the species level. Omnivorous, herbivorous, and graminivorous species did not differ in their response to land-use intensity, whereas bryovorous/lichenivorous Tetrix species showed consistently negative responses to intensive land use. Our highly replicated, long-term and large-scale survey suggests that further land-use intensification threatens many Orthoptera and causes a consistent diversity loss. Low intensity of fertilization, infrequent mowing, and variable grazing will help to maintain a high diversity of orthopterans. The generality of our niche model approach advances studies on species' susceptibility in various study systems.
Land-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.
Aim: Intensification of land use strongly impacts plant communities by causing shifts in taxonomic and functional composition. Mechanisms of land use-induced biodiversity losses have been described for temperate grasslands, but a quantitative assessment of species-specific occurrence optima and maximum tolerance (niche breadth) to land-use intensity (LUI) in Central European grasslands is still lacking.Location: Temperate, managed permanent grasslands in three regions of Germany. Methods:We combined extensive field work with a null model-randomization approach, defined a "habitat niche" for each plant species based on occurrence and abundance across 150 grassland sites differing in LUI (i.e., amount of fertilizer, mowing/grazing intensity and a compound index of these), and assessed their realized niche breadth (tolerance). Underlying mechanisms driving species' responses to LUI were assessed by relating plant functional traits, Ellenberg indicator values (EIV), Grime's ecological strategies (CSR) and Briemle utilization numbers.Results: Out of 151 plant species, 34% responded negatively, whereas 10% responded positively to high LUI. This pattern was mainly driven by species' response to fertilization and mowing frequency; grazing intensity response was less pronounced.Positively reacting species, displaying broader niches, were associated with competition-related functional traits, high EIV for nutrient supply and moisture and high mowing tolerance under spatiotemporally variable conditions. Negatively responding species, displaying relatively narrow niches confined to spatiotemporally homogeneous low LUI sites, were associated with a nutrient-retentive strategy, under nutrientpoor, base-rich soil conditions. Conclusion: Our analyses of individual species' reactions clearly demonstrate that species responding negatively to high LUI display little tolerance towards intensive fertilization and mowing, leading to plant diversity loss; whereas grazing partly thwarts these effects by creating new habitat niches and promoting ruderal species.Our approach can be applied to other habitat types and biogeographical regions in | 675 Additional supporting information may be found online in the Supporting Information section at the end of the article. Appendix S1. Main geographic and environmental characteristics of the Biodiversity Exploratory Regions Appendix S2. Ecological relevance of selected life history traits and ecological strategy types Appendix S3. Exploratory statistic values of all analysed variables and parameters over all species and sites Appendix S4. Correlation analysis of all analysed parameters with abundance-weighted mean niches and abundance-weighted niche breadth Appendix S5. Exploratory statistic values of species responding negatively, neutrally and positively to high intensity land-use Appendix S6. Complete list of plant species-specific abundanceweighted niche values and abundance-weighted niche breadths Appendix S7. Distribution of plant functional traits among "Winner", "Neutral" and "Loser" spec...
Hessenmöller, D. Prati, I. Schöning, F. Buscot, E.-D. Schulze, and the late E. Kalko for their role in setting up the Biodiversity Exploratories project. This study was funded by the DFG Priority Program 1374 'Infrastructure-Biodiversity-Exploratories' and the SNF (310030E-173542/1). Field work permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen and Brandenburg (according to §72 BbgNatSchG).
The current biodiversity decline through anthropogenic land-use not only involves local species losses, but also homogenization of communities, with a few generalist species benefitting most from human activities. Most studies assessed community heterogeneity (β-diversity) on larger scales by comparing different sites, but little is known about impacts on β-diversity within each site, which is relevant for understanding variation in the level of α-diversity, the small-scale distribution of species and associated habitat heterogeneity. To obtain our dataset with 36,899 individuals out of 117 different plant- and leafhopper (Auchenorrhyncha) species, we sampled communities of 140 managed grassland sites across Germany by quantitative vacuum suction of five 1 m plots on each site. Sites differed in land-use intensity as characterized by intensity of fertilization, mowing and grazing. Our results demonstrate a significant within-site homogenization of plant- and leafhopper communities with increasing land-use intensity. Correspondingly, density (- 78%) and γ-diversity (- 35%) declined, particularly with fertilization and mowing intensity. More than 34% of plant- and leafhopper species were significant losers and only 6% were winners of high land-use intensity, with abundant and widespread species being less affected. Increasing land-use intensity adversely affected dietary specialists and promoted generalist species. Our study emphasizes considerable, multifaceted effects of land-use intensification on species loss, with a few dominant generalists winning, and an emerging trend towards more homogenized assemblages. By demonstrating homogenization for the first time within sites, our study highlights that anthropogenic influences on biodiversity even occur on small scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.