AimPredicting the potential for climate change to disrupt host–microbe symbioses requires basic knowledge of the biogeography of these consortia. In plants, fungal symbionts can ameliorate the abiotic stressors that accompany climate warming and thus could influence plants under a changing climate. Forecasting future plant–microbe interactions first requires knowledge of current fungal symbiont distributions, which are poorly resolved relative to the distributions of plants.LocationWe used meta‐analysis to summarize the biogeographic distributions of plant‐fungal symbionts in mountain ecosystems worldwide, because these ecosystems are likely to be among the first to experience climate change‐induced range shifts.MethodsWe analysed 374 records from 53 publications to identify general trends, pinpoint areas in need of greater study and develop reporting guidelines to facilitate future syntheses.ResultsElevational patterns varied strongly among fungal and plant functional groups. Fungal diversity and abundance increased with altitude for the ectomycorrhizal fungi. However, arbuscular mycorrhizal fungi and localized foliar endophytes declined in either abundance or diversity with altitude. In shrubs, fungal abundance increased with elevation, but in C3 grasses, fungal abundance declined with elevation. Altitudinal patterns in fungal composition were stronger than gradients in fungal abundance or diversity, suggesting that species turnover contributes more to elevational gradients in fungal symbionts than does variation in abundance or richness. Plant functional groups were overrepresented by C3 grasses and trees, with surprisingly few data on sedges or shrubs, despite their ecological dominance in mountain ecosystems. Similarly, epichloae, ericoid mycorrhizal fungi and root endophytes were understudied relative to other fungal groups.Main ConclusionsMeta‐analysis revealed broad biogeographic patterns in plant‐fungal symbiont abundance, diversity and composition that inform predictions of future distributions.
Climate change is shifting altitudinal species ranges, with potential to disrupt species interactions. Altitudinal gradient studies and warming experiments can both increase understanding of climate effects on species interactions, but few studies have used both together to improve predictions. We examined whether plant-fungal symbioses responded similarly to altitude and 23 yr of experimental warming. Root-and leaf-associated fungi, which can mediate plants' climate sensitivity, responded divergently to elevation vs. warming. Fungal colonization, diversity, and composition varied with altitude, but climate variables were generally weak predictors; other factors such as host plant identity, plant community composition, or edaphic variables likely drive fungal altitudinal distributions. Manipulated warming altered fungal colonization, but not composition or diversity. Leaf symbionts were more sensitive to climate and experimental warming than root symbionts. Altitudinal patterns and responses to warming differed among host plant species and fungal groups, indicating that predicting climate effects on symbioses will require tracking both host and symbiont identities. Combining experimental and observational methods can yield valuable insight into how climate change may alter plant-symbiont interactions, but our results indicate that altitude does not always serve as an adequate proxy for warming effects on fungal symbionts of plants.
Many biotic interactions influence community structure, yet most distribution models for plants have focused on plant competition or used only abiotic variables to predict plant abundance. Furthermore, biotic interactions are commonly context‐dependent across abiotic gradients. For example, plant–plant interactions can grade from competition to facilitation over temperature gradients. We used a hierarchical Bayesian framework to predict the abundances of 12 plant species across a mountain landscape and test hypotheses on the context‐dependency of biotic interactions over abiotic gradients. We combined field‐based estimates of six biotic interactions (foliar herbivory and pathogen damage, fungal root colonization, fossorial mammal disturbance, plant cover and plant diversity) with abiotic data on climate and soil depth, nutrients and moisture. All biotic interactions were significantly context‐dependent along temperature gradients. Results supported the stress gradient hypothesis: as abiotic stress increased, the strength or direction of the relationship between biotic variables and plant abundance generally switched from negative (suggesting suppressed plant abundance) to positive (suggesting facilitation/mutualism). For half of the species, plant cover was the best predictor of abundance, suggesting that the prior focus on plant–plant interactions is well‐justified. Explicitly incorporating the context‐dependency of biotic interactions generated novel hypotheses about drivers of plant abundance across abiotic gradients and may improve the accuracy of niche models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.