RFID (Radio Frequency Identification) systems are one of the most pervasive computing technologies with technical potential and profitable opportunities in a diverse area of applications. Among their advantages is included their low cost and their broad applicability. However, they also present a number of inherent vulnerabilities. This paper develops a structural methodology for risks that RFID networks face by developing a classification of RFID attacks, presenting their important features, and discussing possible countermeasures. The goal of the paper is to categorize the existing weaknesses of RFID communication so that a better understanding of RFID attacks can be achieved and subsequently more efficient and effective algorithms, techniques and procedures to combat these attacks may be developed.
ast@cs.vu.nl; www.cs.vu.nl/~ast. www.computer.org/internet/ Stay on Track IEEE Internet Computing reports emerging tools, technologies, and applications implemented through the Internet to support a worldwide computing environment.
Abstract. This paper introduces an off-tag RFID access control mechanism called "Selective RFID Jamming". Selective RFID Jamming protects low-cost RFID tags by enforcing access control on their behalf, in a similar manner to the RFID Blocker Tag. However, Selective RFID Jamming is novel because it uses an active mobile device to enforce centralized ACL-based access control policies. Selective RFID Jamming also solves a Differential Signal Analysis attack to which the RFID Blocker Tag is susceptible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.