The transcriptional shift from repression to activation of target genes is crucial for the fidelity of Notch responses through incompletely understood mechanisms that likely involve chromatin-based control. To activate silenced genes, repressive chromatin marks are removed and active marks must be acquired. Histone H3 lysine-4 (H3K4) demethylases are key chromatin modifiers that establish the repressive chromatin state at Notch target genes. However, the counteracting histone methyltransferase required for the active chromatin state remained elusive. Here, we show that the RBP-J interacting factor SHARP is not only able to interact with the NCoR corepressor complex, but also with the H3K4 methyltransferase KMT2D coactivator complex. KMT2D and NCoR compete for the C-terminal SPOC-domain of SHARP. We reveal that the SPOC-domain exclusively binds to phosphorylated NCoR. The balance between NCoR and KMT2D binding is shifted upon mutating the phosphorylation sites of NCoR or upon inhibition of the NCoR kinase CK2β. Furthermore, we show that the homologs of SHARP and KMT2D in Drosophila also physically interact and control Notch-mediated functions in vivo. Together, our findings reveal how signaling can fine-tune a committed chromatin state by phosphorylation of a pivotal chromatin-modifier.
The signal-induced proliferation-associated family of proteins comprises four members, SIPA1 and SIPA1L1-3. Mutations of the human SIPA1L3 gene result in congenital cataracts. In Xenopus, loss of Sipa1l3 function led to a severe eye phenotype that was distinguished by smaller eyes and lenses including lens fiber cell maturation defects. We found a direct interaction between Sipa1l3 and Epha4, building a functional platform for proper ocular development. Epha4 deficiency phenocopied loss of Sipa1l3 and rescue experiments demonstrated that Epha4 acts upstream of Sipa1l3 during eye development, with both Sipa1l3 and Epha4 required for early eye specification. The ocular phenotype, upon loss of either Epha4 or Sipa1l3, was partially mediated by rax. We demonstrate that canonical Wnt signaling is inhibited downstream of Epha4 and Sipa1l3 during normal eye development. Depletion of either Sipa1l3 or Epha4 resulted in an upregulation of axin2 expression, a direct Wnt/β-catenin target gene. In line with this, Sipa1l3 or Epha4 depletion could be rescued by blocking Wnt/β-catenin or activating non-canonical Wnt signaling. We therefore conclude that this pathomechanism prevents proper eye development and maturation of lens fiber cells, resulting in congenital cataracts.
Wnt proteins can activate different intracellular signaling pathways. These pathways need to be tightly regulated for proper cardiogenesis. The canonical Wnt/β-catenin inhibitor Dkk1 has been shown to be sufficient to trigger cardiogenesis in gain-of-function experiments performed in multiple model systems. Loss-of-function studies however did not reveal any fundamental function for Dkk1 during cardiogenesis. Using Xenopus laevis as a model we here show for the first time that Dkk1 is required for proper differentiation of cardiomyocytes, whereas specification of cardiomyocytes remains unaffected in absence of Dkk1. This effect is at least in part mediated through regulation of non-canonical Wnt signaling via Wnt11. In line with these observations we also found that Isl1, a critical regulator for specification of the common cardiac progenitor cell (CPC) population, acts upstream of Dkk1.
The signal-induced proliferation-associated (SIPA) protein family belongs to the RapGAP protein superfamily. Previous studies mainly focused on the expression and function of SIPA genes in vertebrate neuronal tissue. Only limited data about the embryonic expression pattern of the genes are currently available. Our study provides the first expression analysis of sipa1, sipa1l1, sipa1l2, and sipa1l3 during early development of the vertebrate organism Xenopus laevis. In silico, analysis revealed that all genes are highly conserved across species. Semi-quantitative RT-PCR experiments demonstrated that the RNA of all genes was maternally supplied. By whole mount in situ hybridization approaches, we showed that sipa1 is mainly expressed in various sensory organs, the respiratory and blood system, heart, neural tube, and eye. In contrast, sipa1l1 showed a broad expression during development in particular within the brain, somites, eye, and heart. Sipa1l2 was detected in the branchial arches, glomerulus, and the developing eye. In contrast, sipa1l3 revealed a tissue specific expression within the olfactory and otic vesicles, the cranial placodes and ganglia, neural tube, pronephros, retina, and lens. In summary, all sipa gene family members are expressed throughout the whole developing Xenopus organism and might play an important role during vertebrate early embryogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.