ConclusionThus, even children receiving anti-cancer chemotherapy may have a mild or asymptomatic course of COVID-19. While we should not underestimate the risk of developing a more severe course of COVID-19 than observed here, the intensity of preventive measures should not cause delays or obstructions in oncological treatment.
AimsDNA methylation‐based central nervous system (CNS) tumour classification has identified numerous molecularly distinct tumour types, and clinically relevant subgroups among known CNS tumour entities that were previously thought to represent homogeneous diseases. Our study aimed at characterizing a novel, molecularly defined variant of glioneuronal CNS tumour.Patients and methodsDNA methylation profiling was performed using the Infinium MethylationEPIC or 450 k BeadChip arrays (Illumina) and analysed using the ‘conumee’ package in R computing environment. Additional gene panel sequencing was also performed. Tumour samples were collected at the German Cancer Research Centre (DKFZ) and provided by multinational collaborators. Histological sections were also collected and independently reviewed.ResultsGenome‐wide DNA methylation data from >25 000 CNS tumours were screened for clusters separated from established DNA methylation classes, revealing a novel group comprising 31 tumours, mainly found in paediatric patients. This DNA methylation‐defined variant of low‐grade CNS tumours with glioneuronal differentiation displays recurrent monosomy 14, nuclear clusters within a morphology that is otherwise reminiscent of oligodendroglioma and other established entities with clear cell histology, and a lack of genetic alterations commonly observed in other (paediatric) glioneuronal entities.ConclusionsDNA methylation‐based tumour classification is an objective method of assessing tumour origins, which may aid in diagnosis, especially for atypical cases. With increasing sample size, methylation analysis allows for the identification of rare, putative new tumour entities, which are currently not recognized by the WHO classification. Our study revealed the existence of a DNA methylation‐defined class of low‐grade glioneuronal tumours with recurrent monosomy 14, oligodendroglioma‐like features and nuclear clusters.
These results contribute to a better understanding of the correlates of difficulties in long-term psychological adjustment after childhood cancer. Cognitive strategies, which are associated with or may increase the risk for concurrent psychological distress, in specific, avoidance of negative thoughts and a lack of positive future expectations, should be addressed in psychological counseling with survivors suffering from symptoms of distress.
Summary. Glucocorticoids are broadly used for chemotherapy in childhood acute lymphoblastic leukaemia (ALL). The intracellular effects of glucocorticoids are mediated through the glucocorticoid receptor. The human glucocorticoid receptor gamma isoform (hGR-gamma) differs from the main isoform (hGR-alpha) by an additional amino acid within the DNA binding domain of the receptor protein. This may decrease hGR-alpha-mediated transcriptional activation. The importance of hGR-gamma expression in childhood ALL is unknown. To evaluate hGR-gamma mRNA expression levels, a real-time polymerase chain reaction (PCR)-based approach, allowing the selective amplification of hGR-gamma, was developed and optimized.We were able to demonstrate target selectivity of hGRgamma amplification using sequence-specific primers. Studying the structure of the 3¢ end of hGR-gamma, a combination of this isoform with other hGR isoforms could be demonstrated. Using analysis of hGR-gamma-specific amplification in comparison with the expression of hGRtotal (all isoforms) in leukaemic blasts from patients with either a good response to prednisone (PGR) or poor-prednisone response (PPR) in vivo, relative hGR-gamma expression was observed to be lower in cells from patients with PGR compared with PPR, in particular after 10 h of dexamethasone stimulation. These data were correlated with cell survival, demonstrating a more pronounced induction of apoptosis in cells from patients with PGR as compared with PPR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.