Asian pikas have one of the most complex systematics and evolutionary history. The Himalayas is an important habitat for Asian pikas as it hosts 23-25% of pika global diversity and has provided the ancestral training ground for local adaptation to high altitudes. They are one of the most abundant species in the Himalayas and Qinghai Tibetan Plateau (QTP), however genetic studies to explore their population structure and evolution are limited. Here, we utilize a population genomics approach using ~28,000 genome-wide SNP markers obtained from restriction-site associated DNA sequencing in six species of Asian Pikas (Ochotona spp.) that are distributed across the Himalayas and neighboring high-altitude mountains. We examined intra- and inter-species genetic diversity, population structure, phylogenetic history and explored processes that shaped the current genetic diversity of Pikas across the Himalayas. We identified low nucleotide diversity and high inbreeding coefficient across all species which possibly indicated decreasing population size in these species. We also identified extensive evidence of gene flow (both historic and contemporary) across these species. Our findings indicate that inter-species gene flow is a key evolutionary process that has been countering the negative effect of low genetic diversity among Asian pikas.
Studying the genetic variation among different species distributed across their core and range‐edge habitats can provide valuable insights into how genetic variation changes across the species' distribution range. This information can be important for understanding local adaptation, as well as for conservation and management efforts. In this study, we have carried out genomic characterization of six species of Asian Pikas distributed along their core and range‐edge habitats in the Himalayas. We utilized a population genomics approach using ~28,000 genome‐wide SNP markers obtained from restriction‐site associated DNA sequencing. We identified low nucleotide diversity and high inbreeding coefficients in all six species across their core and range‐edge habitats. We also identified evidence of gene flow among genetically diverse species. Our results provide evidence of reduced genetic diversity in Asian pikas distributed across the Himalayas and the neighboring regions and indicate that recurrent gene flow is possibly a key mechanism for maintaining genetic diversity and adaptive potential in these pikas. However, full‐scale genomics studies that utilize whole‐genome sequencing approaches will be needed to quantify the direction and timing of gene flow and functional changes associated with introgressed regions in the genome. Our results represent an important step toward understanding the patterns and consequences of gene flow in species, sampled at the least studied, yet climatically vulnerable part of their habitat that can be further used to inform conservation strategies that promote connectivity and gene flow between populations.
The invasive avian vampire fly (Philornis downsi, Diptera: Muscidae) is considered one of the greatest threats to the endemic avifauna of the Galápagos Islands. The fly larvae parasitize nearly every passerine species, including Darwin’s finches. Most P. downsi research to date has focused on the effects of the fly on avian host fitness and mitigation methods. A lag in research related to the genetics of this invasion demonstrates, in part, the need to develop full-scale genomic resources with which to address further questions within this system. In this study, an adult female P. downsi was sequenced to generate a high-quality genome assembly. We examined various features of the genome (e.g., coding regions, non-coding transposable elements) and carried out comparative genomics analysis against other dipteran genomes. We identified lists of gene families that are significantly expanding or contracting in P. downsi that are related to insecticide resistance, detoxification, and counter defense against host immune responses. The P. downsi genome assembly provides an important resource for studying the molecular basis of successful invasion in the Galápagos and the dynamics of its population across multiple islands. The findings of significantly changing gene families associated with insecticide resistance and immune responses highlight the need for further investigations into the role of different gene families in aiding the fly’s successful invasion. Furthermore, this genomic resource provides a necessary tool to better inform future research studies and mitigation strategies aimed at minimizing the fly’s impact on Galápagos birds.
The invasive avian vampire fly (Philornis downsi) is considered one of the greatest threats to the unique and endemic avifauna of the Galpagos Islands, Ecuador. The fly parasitizes nearly every passerine species, including Darwins finches, in the Galpagos. The fly is thought to have been introduced from mainland Ecuador, although the full pathway of invasion is not yet known. The majority of research to date has focused on the effects of the fly on the fitness of avian hosts and explorations of mitigation methods. A lag in research related to the genetics of this invasion demonstrates, in part, a need to develop full-scale genomic resources with which to address further questions within this system. In this study, an adult P. downsi collected from San Cristobal Island within the Galpagos archipelago was sequenced to generate a high-quality genome assembly. We examined various features of the genome (e.g., coding regions, non-coding transposable elements) and carried out comparative genomics analysis against other dipteran genomes. We identified lists of gene families that are significantly expanding/contracting in P. downsi >that are related to insecticide resistance, detoxification, and potential feeding ecology and counter defense against host immune responses. The P. downsi genome assembly provides an important foundational resource for studying the molecular basis of its successful invasion in the Galpagos and the dynamics of its population across multiple islands. The findings of significantly changing gene families associated with insecticide resistance and immune responses highlight the need for further investigations into the role of different gene families in aiding the flys successful invasion. Furthermore, this genomic resource will also better help inform future research studies and mitigation strategies aimed at minimizing the flys impact on the birds of the Galpagos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.