A challenging problem in the field of avian ecology is deriving information on bird population movement trends. This necessitates the regular counting of birds which is usually not an easily-achievable task. A promising attempt towards solving the bird counting problem in a more consistent and fast way is to predict the number of birds in different regions from their photos. For this purpose, we exploit the ability of computers to learn from past data through deep learning which has been a leading sub-field of AI for image understanding. Our data source is a collection of on-ground photos taken during our long run of birding activity. We employ several state-of-the-art generic object-detection algorithms to learn to detect birds, each being a member of one of the 38 identified species, in natural scenes. The experiments revealed that computer-aided counting outperformed the manual counting with respect to both accuracy and time. As a real-world application of image-based bird counting, we prepared the spatial bird order distribution and species diversity maps of Turkey by utilizing the geographic information system (GIS) technology. Our results suggested that deep learning can assist humans in bird monitoring activities and increase citizen scientists’ participation in large-scale bird surveys.
The human eye contains valuable information about an individual’s identity and health. Therefore, segmenting the eye into distinct regions is an essential step towards gathering this useful information precisely. The main challenges in segmenting the human eye include low light conditions, reflections on the eye, variations in the eyelid, and head positions that make an eye image hard to segment. For this reason, there is a need for deep neural networks, which are preferred due to their success in segmentation problems. However, deep neural networks need a large amount of manually annotated data to be trained. Manual annotation is a labor-intensive task, and to tackle this problem, we used data augmentation methods to improve synthetic data. In this paper, we detail the exploration of the scenario, which, with limited data, whether performance can be enhanced using similar context data with image augmentation methods. Our training and test set consists of 3D synthetic eye images generated from the UnityEyes application and manually annotated real-life eye images, respectively. We examined the effect of using synthetic eye images with the Deeplabv3+ network in different conditions using image augmentation methods on the synthetic data. According to our experiments, the network trained with processed synthetic images beside real-life images produced better mIoU results than the network, which only trained with real-life images in the Base dataset. We also observed mIoU increase in the test set we created from MICHE II competition images.
Endemic plants are those that are native to a specific geographic region and are found nowhere else in the world. These plants are crucial for biodiversity, conservation, cultural significance, and economic value. Turkey hosts more than 4000 endemic plants. Therefore, this makes Turkey the richest in Europe. Preserving this habitat holds importance. This study aims to conceptualize a possible application that helps individuals to identify endemic species using camera-captured images. Thus, aiding the preservation of the habitat. In this study, 23 selected species of Turkey’s endemic biodiversity are classified using Deep Neural Network built. In line with the objective of this study, a dataset containing 253 images is created to train the network. The dataset is available at: github.com/melihoz/endemicdataset
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.