Tandem mass spectrometry is the only high-throughput method for analyzing the protein content of complex biological samples and is thus the primary technology driving the growth of the field of proteomics. A key outstanding challenge in this field involves identifying the sequence of amino acids -- the peptide -- responsible for generating each observed spectrum, without making use of prior knowledge in the form of a peptide sequence database. Although various machine learning methods have been developed to address this de novo sequencing problem, challenges that arise when modeling tandem mass spectra have led to complex models that combine multiple neural networks and post-processing steps. We propose a simple yet powerful method for de novo peptide sequencing, Casanovo, that uses a transformer framework to map directly from a sequence of observed peaks (a mass spectrum) to a sequence of amino acids (a peptide). Our experiments show that Casanovo achieves state-of-the-art performance on a benchmark dataset using a standard cross-species evaluation framework which involves testing with out-of-distribution samples, i.e., spectra with never-before-seen peptide labels. Casanovo not only achieves superior performance but does so at a fraction of the model complexity and inference time required by other methods.
A fundamental challenge for any mass spectrometry-based proteomics experiment is the identification of the peptide that generated each acquired tandem mass spectrum. Although approaches that leverage known peptide sequence databases are widely used and effective for well-characterized model organisms, such methods cannot detect unexpected peptides and can be impractical or impossible to apply in some settings. Thus, the ability to assign peptide sequences to the acquired tandem mass spectra without prior information -- de novo peptide sequencing -- is valuable for gaining biological insights for tasks including antibody sequencing, immunopeptidomics, and metaproteomics. Although many methods have been developed to address this de novo sequencing problem, it remains an outstanding challenge, in part due to the difficulty of modeling the irregular data structure of tandem mass spectra. Here, we describe Casanovo, a machine learning model that uses a transformer neural network architecture to translate the sequence of peaks in a tandem mass spectrum into the sequence of amino acids that comprise the generating peptide. We train a Casanovo model from 30 million labeled spectra and demonstrate that the model outperforms several state-of-the-art methods on a cross-species benchmark dataset. We also develop a version of Casanovo that is fine-tuned for non-enzymatic peptides. Finally, we demonstrate that Casanovo's superior performance improves the analysis of immunopeptideomics and metaproteomics experiments and allows us to delve deeper into the dark proteome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.